Пример #1
0
    def test_get_2d_grid(self):
        '''
        Tests the module to count the events across a grid
        '''
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        # Case 1 - all events in grid (including borderline cases)
        comp_table = np.array([[1960., 4.0]])
        lons = np.arange(35.0, 41.0, 1.0)
        lats = np.arange(40.0, 46.0, 1.0)
        mags = 5.0 * np.ones(6)
        years = 2000. * np.ones(6)
        expected_result = np.zeros(100, dtype=int)
        expected_result[[9, 28, 46, 64, 82, 90]] = 1
        np.testing.assert_array_almost_equal(
            expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)

        # Case 2 - some events outside grid
        lons = np.arange(35.0, 42.0, 1.0)
        lats = np.arange(40.0, 47.0, 1.0)
        mags = 5.0 * np.ones(7)
        years = 2000. * np.ones(7)
        np.testing.assert_array_almost_equal(
            expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)
Пример #2
0
    def test_analysis_Frankel_comparison(self):
        '''
        To test the run_analysis function we compare test results with those
        from Frankel's fortran implementation, under the same conditions
        '''
        self.grid_limits = [-128., -113.0, 0.2, 30., 43.0, 0.2, 0., 100., 100.]
        comp_table = np.array([[1933., 4.0], [1900., 5.0], [1850., 6.0],
                               [1850., 7.0]])
        config = {'Length_Limit': 3., 'BandWidth': 50., 'increment': 0.1}
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=0.8)
        self.catalogue = Catalogue()
        frankel_catalogue = np.genfromtxt(
            os.path.join(BASE_PATH, FRANKEL_TEST_CATALOGUE))
        self.catalogue.data['magnitude'] = frankel_catalogue[:, 0]
        self.catalogue.data['longitude'] = frankel_catalogue[:, 1]
        self.catalogue.data['latitude'] = frankel_catalogue[:, 2]
        self.catalogue.data['depth'] = frankel_catalogue[:, 3]
        self.catalogue.data['year'] = frankel_catalogue[:, 4]
        self.catalogue.end_year = 2006
        frankel_results = np.genfromtxt(
            os.path.join(BASE_PATH, FRANKEL_OUTPUT_FILE))
        # Run analysis
        output_data = self.model.run_analysis(
            self.catalogue,
            config,
            completeness_table=comp_table,
            smoothing_kernel=IsotropicGaussian())

        self.assertTrue(
            fabs(np.sum(output_data[:, -1]) -
                 np.sum(output_data[:, -2])) < 1.0)
        self.assertTrue(fabs(np.sum(output_data[:, -1]) - 390.) < 1.0)
    def test_instantiation(self):
        '''
        Tests the instantiation of the class
        '''
        # Test 1: Good Grid Limits
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        expected_dict = {'beta': None,
                         'bval': None,
                         'catalogue': None,
                         'data': None,
                         'grid': None,
                         'grid_limits': {'xmax': 40.0,
                                         'xmin': 35.0,
                                         'xspc': 0.5,
                                         'ymax': 45.0,
                                         'ymin': 40.0,
                                         'yspc': 0.5,
                                         'zmax': 40.0,
                                         'zmin': 0.0,
                                         'zspc': 20.0},
                         'kernel': None,
                         'use_3d': False}

        self.model = SmoothedSeismicity(self.grid_limits)
        self.assertDictEqual(self.model.__dict__, expected_dict)
        # Test 2 - with b-value set
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_dict['bval'] = 1.0
        expected_dict['beta'] = np.log(10.)
        self.assertDictEqual(self.model.__dict__, expected_dict)
Пример #4
0
    def test_instantiation(self):
        '''
        Tests the instantiation of the class
        '''
        # Test 1: Good Grid Limits
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        expected_dict = {
            'beta': None,
            'bval': None,
            'catalogue': None,
            'data': None,
            'grid': None,
            'grid_limits': {
                'xmax': 40.0,
                'xmin': 35.0,
                'xspc': 0.5,
                'ymax': 45.0,
                'ymin': 40.0,
                'yspc': 0.5,
                'zmax': 40.0,
                'zmin': 0.0,
                'zspc': 20.0
            },
            'kernel': None,
            'use_3d': False
        }

        self.model = SmoothedSeismicity(self.grid_limits)
        self.assertDictEqual(self.model.__dict__, expected_dict)
        # Test 2 - with b-value set
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_dict['bval'] = 1.0
        expected_dict['beta'] = np.log(10.)
        self.assertDictEqual(self.model.__dict__, expected_dict)
Пример #5
0
    def test_csv_writer(self):
        '''
        Short test of consistency of the csv writer
        '''

        self.grid_limits = [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.]
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        self.model.data = np.array([[1.0, 1.0, 10.0, 4.0, 4.0, 1.0],
                                    [2.0, 2.0, 20.0, 8.0, 8.0, 1.0]])
        self.model.write_to_csv(OUTPUT_FILE)
        return_data = np.genfromtxt(OUTPUT_FILE, delimiter=',', skip_header=1)
        np.testing.assert_array_almost_equal(return_data, self.model.data)
        os.system('rm ' + OUTPUT_FILE)
    def test_get_3d_grid(self):
        '''
        Tests the module to count the events in a 3D grid
        '''
        comp_table = np.array([[1960., 4.0]])
        self.catalogue = Catalogue()
        self.catalogue.data['longitude'] = np.hstack([
            np.arange(35., 41.0, 1.0),
            np.arange(35., 41.0, 1.0)])
        self.catalogue.data['latitude'] = np.hstack([
            np.arange(40., 46.0, 1.0),
            np.arange(40., 46.0, 1.0)])
        self.catalogue.data['depth'] = np.hstack([10.0 * np.ones(6),
                                                  30.0 * np.ones(6)])
        self.catalogue.data['magnitude'] = 4.5 * np.ones(12)
        self.catalogue.data['year'] = 1990. * np.ones(12)


        # Case 1 - one depth layer
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40.0, 45., 0.5, 0., 40., 40.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        [gx, gy] = np.meshgrid(np.arange(35.25, 40., 0.5),
                               np.arange(40.25, 45., 0.5))
        ngp = np.shape(gx)[0]  * np.shape(gy)[1]
        gx = np.reshape(gx, [ngp, 1])
        gy = np.reshape(gy, [ngp, 1])
        gz = 20. * np.ones(ngp)
        expected_count = np.zeros(ngp, dtype=float)
        expected_count[[9, 28, 46, 64, 82, 90]] = 2.0
        expected_result = np.column_stack([gx, np.flipud(gy), gz,
                                           expected_count])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)

        # Case 2 - multiple depth layers
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45., 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_result = np.vstack([expected_result, expected_result])
        expected_count = np.zeros(200)
        expected_count[[9, 28, 46, 64, 82, 90,
            109, 128, 146, 164, 182, 190]] = 1.0
        expected_result[:, -1] = expected_count
        expected_result[:, 2] = np.hstack([10. * np.ones(100),
                                           30. * np.ones(100)])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)
    def test_analysis_Frankel_comparison(self):
        '''
        To test the run_analysis function we compare test results with those
        from Frankel's fortran implementation, under the same conditions
        '''
        self.grid_limits = [-128., -113.0, 0.2, 30., 43.0, 0.2, 0., 100., 100.]
        comp_table = np.array([[1933., 4.0],
                               [1900., 5.0],
                               [1850., 6.0],
                               [1850., 7.0]])
        config = {'Length_Limit': 3., 'BandWidth': 50., 'increment': 0.1}
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=0.8)
        self.catalogue = Catalogue()
        frankel_catalogue = np.genfromtxt(os.path.join(BASE_PATH,
                                                       FRANKEL_TEST_CATALOGUE))
        self.catalogue.data['magnitude'] = frankel_catalogue[:, 0]
        self.catalogue.data['longitude'] = frankel_catalogue[:, 1]
        self.catalogue.data['latitude'] = frankel_catalogue[:, 2]
        self.catalogue.data['depth'] = frankel_catalogue[:, 3]
        self.catalogue.data['year'] = frankel_catalogue[:, 4]
        self.catalogue.end_year = 2006
        frankel_results = np.genfromtxt(os.path.join(BASE_PATH,
                                                     FRANKEL_OUTPUT_FILE))
        # Run analysis
        output_data = self.model.run_analysis(
            self.catalogue,
            config,
            completeness_table=comp_table,
            smoothing_kernel = IsotropicGaussian())

        self.assertTrue(fabs(np.sum(output_data[:, -1]) -
                             np.sum(output_data[:, -2])) < 1.0)
        self.assertTrue(fabs(np.sum(output_data[:, -1]) - 390.) < 1.0)
    def test_get_2d_grid(self):
        '''
        Tests the module to count the events across a grid
        '''
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        # Case 1 - all events in grid (including borderline cases)
        comp_table = np.array([[1960., 4.0]])
        lons = np.arange(35.0, 41.0, 1.0)
        lats = np.arange(40.0, 46.0, 1.0)
        mags = 5.0 * np.ones(6)
        years = 2000. * np.ones(6)
        expected_result = np.zeros(100, dtype=int)
        expected_result[[9, 28, 46, 64, 82, 90]] = 1
        np.testing.assert_array_almost_equal(expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)

        # Case 2 - some events outside grid
        lons = np.arange(35.0, 42.0, 1.0)
        lats = np.arange(40.0, 47.0, 1.0)
        mags = 5.0 * np.ones(7)
        years = 2000. * np.ones(7)
        np.testing.assert_array_almost_equal(expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)
Пример #9
0
    def test_get_3d_grid(self):
        '''
        Tests the module to count the events in a 3D grid
        '''
        comp_table = np.array([[1960., 4.0]])
        self.catalogue = Catalogue()
        self.catalogue.data['longitude'] = np.hstack(
            [np.arange(35., 41.0, 1.0),
             np.arange(35., 41.0, 1.0)])
        self.catalogue.data['latitude'] = np.hstack(
            [np.arange(40., 46.0, 1.0),
             np.arange(40., 46.0, 1.0)])
        self.catalogue.data['depth'] = np.hstack(
            [10.0 * np.ones(6), 30.0 * np.ones(6)])
        self.catalogue.data['magnitude'] = 4.5 * np.ones(12)
        self.catalogue.data['year'] = 1990. * np.ones(12)

        # Case 1 - one depth layer
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40.0, 45., 0.5, 0., 40., 40.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        [gx, gy] = np.meshgrid(np.arange(35.25, 40., 0.5),
                               np.arange(40.25, 45., 0.5))
        ngp = np.shape(gx)[0] * np.shape(gy)[1]
        gx = np.reshape(gx, [ngp, 1])
        gy = np.reshape(gy, [ngp, 1])
        gz = 20. * np.ones(ngp)
        expected_count = np.zeros(ngp, dtype=float)
        expected_count[[9, 28, 46, 64, 82, 90]] = 2.0
        expected_result = np.column_stack(
            [gx, np.flipud(gy), gz, expected_count])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)

        # Case 2 - multiple depth layers
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45., 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_result = np.vstack([expected_result, expected_result])
        expected_count = np.zeros(200)
        expected_count[[9, 28, 46, 64, 82, 90, 109, 128, 146, 164, 182,
                        190]] = 1.0
        expected_result[:, -1] = expected_count
        expected_result[:, 2] = np.hstack(
            [10. * np.ones(100), 30. * np.ones(100)])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)
    def test_csv_writer(self):
        '''
        Short test of consistency of the csv writer
        '''

        self.grid_limits = [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.]
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        self.model.data = np.array([[1.0, 1.0, 10.0, 4.0, 4.0, 1.0],
                                    [2.0, 2.0, 20.0, 8.0, 8.0, 1.0]])
        self.model.write_to_csv(OUTPUT_FILE)
        return_data = np.genfromtxt(OUTPUT_FILE, delimiter=',', skip_header=1)
        np.testing.assert_array_almost_equal(return_data, self.model.data)
        os.system('rm ' + OUTPUT_FILE)
Пример #11
0
# res, spc = 0.2, 250


# model
# [xmin, xmax, spcx, ymin, ymax, spcy, zmin, spcz]
map_config = {"min_lon": -95.0, "max_lon": -25.0, "min_lat": -65.0, "max_lat": 25.0, "resolution": "l"}
# _l = [ 118.5,  124,  res,  20.0,   26.5,  res,    0,   300,   300]
# _l = [ -95.,  -25,  res,  -65,   25,  res,    0,   800,   800]
_l = [-80, -30, res, -37, 13, res, 0, 30, 30]
grid_limits = Grid.make_from_list(_l)

nx = round((_l[1] - _l[0]) / _l[2], 0)
ny = round((_l[4] - _l[3]) / _l[5], 0)
grid_shape = (nx, ny)
print grid_shape
model = SmoothedSeismicity(grid_limits, bvalue=1.0)

# Time-varying completeness
comp_table = np.array([[1980.0, 3.5], [1970.0, 4.5], [1960.0, 5.0]])


if model_name == "hmtk_sa3":
    comp_table = np.array(
        [
            [1986, 3.0],
            [1986, 3.5],
            [1986, 4.0],
            [1960, 4.5],
            [1958, 5.0],
            [1958, 5.5],
            [1927, 6.0],
Пример #12
0
# In[ ]:

from hmtk.seismicity.smoothing.smoothed_seismicity import SmoothedSeismicity
smoothing_config = {"BandWidth": 50., "Length_Limit": 3., "increment": 0.1}
#bvalue = 0.819
#bvalue = 0.835
#upper
#bvalue = 0.747
#bvalue= 0.727
#bvalue= 1.062
#lower
#bvalue = 0.892
#bvalue = 0.944
#bvalue = 1.355
smoother = SmoothedSeismicity([100., 160., 0.1, -45., -5, 0.1, 0., 20., 20.],
                              bvalue=bvalue)
#smoothed_grid = smoother.run_analysis(source_model.sources[0].catalogue, smoothing_config, completeness_table=completeness_table_a)
print 'Running smoothing'
smoothed_grid = smoother.run_analysis(source.catalogue,
                                      smoothing_config,
                                      completeness_table=completeness_table_a)
smoother_filename = 'smoothed_%i_%i_mmin_%.1f_%.3f_0.1.csv' % (
    smoothing_config["BandWidth"], smoothing_config["Length_Limit"],
    completeness_table_a[0][-1], bvalue)
smoother.write_to_csv(smoother_filename)

# In[ ]:

#smoother_filename = 'smoothed_%i_%i_mmin_%.1f_0.1.csv' % \
##                        (smoothing_config["BandWidth"], smoothing_config["Length_Limit"],
#                      completeness_table_a[0][-1])
class TestSmoothedSeismicity(unittest.TestCase):
    '''
    Class to test the implementation of the smoothed seismicity algorithm
    '''
    def setUp(self):
        self.grid_limits = []
        self.model = None

    def test_instantiation(self):
        '''
        Tests the instantiation of the class
        '''
        # Test 1: Good Grid Limits
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        expected_dict = {'beta': None,
                         'bval': None,
                         'catalogue': None,
                         'data': None,
                         'grid': None,
                         'grid_limits': {'xmax': 40.0,
                                         'xmin': 35.0,
                                         'xspc': 0.5,
                                         'ymax': 45.0,
                                         'ymin': 40.0,
                                         'yspc': 0.5,
                                         'zmax': 40.0,
                                         'zmin': 0.0,
                                         'zspc': 20.0},
                         'kernel': None,
                         'use_3d': False}

        self.model = SmoothedSeismicity(self.grid_limits)
        self.assertDictEqual(self.model.__dict__, expected_dict)
        # Test 2 - with b-value set
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_dict['bval'] = 1.0
        expected_dict['beta'] = np.log(10.)
        self.assertDictEqual(self.model.__dict__, expected_dict)

    def test_get_2d_grid(self):
        '''
        Tests the module to count the events across a grid
        '''
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        # Case 1 - all events in grid (including borderline cases)
        comp_table = np.array([[1960., 4.0]])
        lons = np.arange(35.0, 41.0, 1.0)
        lats = np.arange(40.0, 46.0, 1.0)
        mags = 5.0 * np.ones(6)
        years = 2000. * np.ones(6)
        expected_result = np.zeros(100, dtype=int)
        expected_result[[9, 28, 46, 64, 82, 90]] = 1
        np.testing.assert_array_almost_equal(expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)

        # Case 2 - some events outside grid
        lons = np.arange(35.0, 42.0, 1.0)
        lats = np.arange(40.0, 47.0, 1.0)
        mags = 5.0 * np.ones(7)
        years = 2000. * np.ones(7)
        np.testing.assert_array_almost_equal(expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)

    def test_get_3d_grid(self):
        '''
        Tests the module to count the events in a 3D grid
        '''
        comp_table = np.array([[1960., 4.0]])
        self.catalogue = Catalogue()
        self.catalogue.data['longitude'] = np.hstack([
            np.arange(35., 41.0, 1.0),
            np.arange(35., 41.0, 1.0)])
        self.catalogue.data['latitude'] = np.hstack([
            np.arange(40., 46.0, 1.0),
            np.arange(40., 46.0, 1.0)])
        self.catalogue.data['depth'] = np.hstack([10.0 * np.ones(6),
                                                  30.0 * np.ones(6)])
        self.catalogue.data['magnitude'] = 4.5 * np.ones(12)
        self.catalogue.data['year'] = 1990. * np.ones(12)


        # Case 1 - one depth layer
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40.0, 45., 0.5, 0., 40., 40.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        [gx, gy] = np.meshgrid(np.arange(35.25, 40., 0.5),
                               np.arange(40.25, 45., 0.5))
        ngp = np.shape(gx)[0]  * np.shape(gy)[1]
        gx = np.reshape(gx, [ngp, 1])
        gy = np.reshape(gy, [ngp, 1])
        gz = 20. * np.ones(ngp)
        expected_count = np.zeros(ngp, dtype=float)
        expected_count[[9, 28, 46, 64, 82, 90]] = 2.0
        expected_result = np.column_stack([gx, np.flipud(gy), gz,
                                           expected_count])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)

        # Case 2 - multiple depth layers
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45., 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_result = np.vstack([expected_result, expected_result])
        expected_count = np.zeros(200)
        expected_count[[9, 28, 46, 64, 82, 90,
            109, 128, 146, 164, 182, 190]] = 1.0
        expected_result[:, -1] = expected_count
        expected_result[:, 2] = np.hstack([10. * np.ones(100),
                                           30. * np.ones(100)])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)

    def test_csv_writer(self):
        '''
        Short test of consistency of the csv writer
        '''

        self.grid_limits = [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.]
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        self.model.data = np.array([[1.0, 1.0, 10.0, 4.0, 4.0, 1.0],
                                    [2.0, 2.0, 20.0, 8.0, 8.0, 1.0]])
        self.model.write_to_csv(OUTPUT_FILE)
        return_data = np.genfromtxt(OUTPUT_FILE, delimiter=',', skip_header=1)
        np.testing.assert_array_almost_equal(return_data, self.model.data)
        os.system('rm ' + OUTPUT_FILE)


    def test_analysis_Frankel_comparison(self):
        '''
        To test the run_analysis function we compare test results with those
        from Frankel's fortran implementation, under the same conditions
        '''
        self.grid_limits = [-128., -113.0, 0.2, 30., 43.0, 0.2, 0., 100., 100.]
        comp_table = np.array([[1933., 4.0],
                               [1900., 5.0],
                               [1850., 6.0],
                               [1850., 7.0]])
        config = {'Length_Limit': 3., 'BandWidth': 50., 'increment': 0.1}
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=0.8)
        self.catalogue = Catalogue()
        frankel_catalogue = np.genfromtxt(os.path.join(BASE_PATH,
                                                       FRANKEL_TEST_CATALOGUE))
        self.catalogue.data['magnitude'] = frankel_catalogue[:, 0]
        self.catalogue.data['longitude'] = frankel_catalogue[:, 1]
        self.catalogue.data['latitude'] = frankel_catalogue[:, 2]
        self.catalogue.data['depth'] = frankel_catalogue[:, 3]
        self.catalogue.data['year'] = frankel_catalogue[:, 4]
        self.catalogue.end_year = 2006
        frankel_results = np.genfromtxt(os.path.join(BASE_PATH,
                                                     FRANKEL_OUTPUT_FILE))
        # Run analysis
        output_data = self.model.run_analysis(
            self.catalogue,
            config,
            completeness_table=comp_table,
            smoothing_kernel = IsotropicGaussian())

        self.assertTrue(fabs(np.sum(output_data[:, -1]) -
                             np.sum(output_data[:, -2])) < 1.0)
        self.assertTrue(fabs(np.sum(output_data[:, -1]) - 390.) < 1.0)
Пример #14
0
class TestSmoothedSeismicity(unittest.TestCase):
    '''
    Class to test the implementation of the smoothed seismicity algorithm
    '''
    def setUp(self):
        self.grid_limits = []
        self.model = None

    def test_instantiation(self):
        '''
        Tests the instantiation of the class
        '''
        # Test 1: Good Grid Limits
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        expected_dict = {
            'beta': None,
            'bval': None,
            'catalogue': None,
            'data': None,
            'grid': None,
            'grid_limits': {
                'xmax': 40.0,
                'xmin': 35.0,
                'xspc': 0.5,
                'ymax': 45.0,
                'ymin': 40.0,
                'yspc': 0.5,
                'zmax': 40.0,
                'zmin': 0.0,
                'zspc': 20.0
            },
            'kernel': None,
            'use_3d': False
        }

        self.model = SmoothedSeismicity(self.grid_limits)
        self.assertDictEqual(self.model.__dict__, expected_dict)
        # Test 2 - with b-value set
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_dict['bval'] = 1.0
        expected_dict['beta'] = np.log(10.)
        self.assertDictEqual(self.model.__dict__, expected_dict)

    def test_get_2d_grid(self):
        '''
        Tests the module to count the events across a grid
        '''
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        # Case 1 - all events in grid (including borderline cases)
        comp_table = np.array([[1960., 4.0]])
        lons = np.arange(35.0, 41.0, 1.0)
        lats = np.arange(40.0, 46.0, 1.0)
        mags = 5.0 * np.ones(6)
        years = 2000. * np.ones(6)
        expected_result = np.zeros(100, dtype=int)
        expected_result[[9, 28, 46, 64, 82, 90]] = 1
        np.testing.assert_array_almost_equal(
            expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)

        # Case 2 - some events outside grid
        lons = np.arange(35.0, 42.0, 1.0)
        lats = np.arange(40.0, 47.0, 1.0)
        mags = 5.0 * np.ones(7)
        years = 2000. * np.ones(7)
        np.testing.assert_array_almost_equal(
            expected_result,
            self.model.create_2D_grid_simple(lons, lats, years, mags,
                                             comp_table))
        self.assertEqual(np.sum(expected_result), 6)

    def test_get_3d_grid(self):
        '''
        Tests the module to count the events in a 3D grid
        '''
        comp_table = np.array([[1960., 4.0]])
        self.catalogue = Catalogue()
        self.catalogue.data['longitude'] = np.hstack(
            [np.arange(35., 41.0, 1.0),
             np.arange(35., 41.0, 1.0)])
        self.catalogue.data['latitude'] = np.hstack(
            [np.arange(40., 46.0, 1.0),
             np.arange(40., 46.0, 1.0)])
        self.catalogue.data['depth'] = np.hstack(
            [10.0 * np.ones(6), 30.0 * np.ones(6)])
        self.catalogue.data['magnitude'] = 4.5 * np.ones(12)
        self.catalogue.data['year'] = 1990. * np.ones(12)

        # Case 1 - one depth layer
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40.0, 45., 0.5, 0., 40., 40.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        [gx, gy] = np.meshgrid(np.arange(35.25, 40., 0.5),
                               np.arange(40.25, 45., 0.5))
        ngp = np.shape(gx)[0] * np.shape(gy)[1]
        gx = np.reshape(gx, [ngp, 1])
        gy = np.reshape(gy, [ngp, 1])
        gz = 20. * np.ones(ngp)
        expected_count = np.zeros(ngp, dtype=float)
        expected_count[[9, 28, 46, 64, 82, 90]] = 2.0
        expected_result = np.column_stack(
            [gx, np.flipud(gy), gz, expected_count])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)

        # Case 2 - multiple depth layers
        self.grid_limits = Grid.make_from_list(
            [35.0, 40., 0.5, 40., 45., 0.5, 0., 40., 20.])
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        expected_result = np.vstack([expected_result, expected_result])
        expected_count = np.zeros(200)
        expected_count[[9, 28, 46, 64, 82, 90, 109, 128, 146, 164, 182,
                        190]] = 1.0
        expected_result[:, -1] = expected_count
        expected_result[:, 2] = np.hstack(
            [10. * np.ones(100), 30. * np.ones(100)])
        self.model.create_3D_grid(self.catalogue, comp_table)
        np.testing.assert_array_almost_equal(expected_result, self.model.data)

    def test_csv_writer(self):
        '''
        Short test of consistency of the csv writer
        '''

        self.grid_limits = [35.0, 40., 0.5, 40., 45.0, 0.5, 0., 40., 20.]
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=1.0)
        self.model.data = np.array([[1.0, 1.0, 10.0, 4.0, 4.0, 1.0],
                                    [2.0, 2.0, 20.0, 8.0, 8.0, 1.0]])
        self.model.write_to_csv(OUTPUT_FILE)
        return_data = np.genfromtxt(OUTPUT_FILE, delimiter=',', skip_header=1)
        np.testing.assert_array_almost_equal(return_data, self.model.data)
        os.system('rm ' + OUTPUT_FILE)

    def test_analysis_Frankel_comparison(self):
        '''
        To test the run_analysis function we compare test results with those
        from Frankel's fortran implementation, under the same conditions
        '''
        self.grid_limits = [-128., -113.0, 0.2, 30., 43.0, 0.2, 0., 100., 100.]
        comp_table = np.array([[1933., 4.0], [1900., 5.0], [1850., 6.0],
                               [1850., 7.0]])
        config = {'Length_Limit': 3., 'BandWidth': 50., 'increment': 0.1}
        self.model = SmoothedSeismicity(self.grid_limits, bvalue=0.8)
        self.catalogue = Catalogue()
        frankel_catalogue = np.genfromtxt(
            os.path.join(BASE_PATH, FRANKEL_TEST_CATALOGUE))
        self.catalogue.data['magnitude'] = frankel_catalogue[:, 0]
        self.catalogue.data['longitude'] = frankel_catalogue[:, 1]
        self.catalogue.data['latitude'] = frankel_catalogue[:, 2]
        self.catalogue.data['depth'] = frankel_catalogue[:, 3]
        self.catalogue.data['year'] = frankel_catalogue[:, 4]
        self.catalogue.end_year = 2006
        frankel_results = np.genfromtxt(
            os.path.join(BASE_PATH, FRANKEL_OUTPUT_FILE))
        # Run analysis
        output_data = self.model.run_analysis(
            self.catalogue,
            config,
            completeness_table=comp_table,
            smoothing_kernel=IsotropicGaussian())

        self.assertTrue(
            fabs(np.sum(output_data[:, -1]) -
                 np.sum(output_data[:, -2])) < 1.0)
        self.assertTrue(fabs(np.sum(output_data[:, -1]) - 390.) < 1.0)
Пример #15
0
def run_smoothing(grid_lims,
                  smoothing_config,
                  catalogue,
                  completeness_table,
                  map_config,
                  run,
                  overwrite=True):
    """Run all the smoothing
    """
    ystart = completeness_table[-1][0]
    yend = catalogue.end_year
    catalogue_comp = deepcopy(catalogue)
    # Ensuring that catalogue is cleaned of earthquakes outside of
    # completeness period
    index = catalogue_comp.data['year'] >= ystart
    catalogue_comp.purge_catalogue(index)

    completeness_string = 'comp'
    for ym in completeness_table:
        completeness_string += '_%i_%.1f' % (ym[0], ym[1])
    smoother_filename = 'Australia_Fixed_%i_%i_b%.3f_mmin_%.1f_0.1%s.csv' % (
        smoothing_config["BandWidth"], smoothing_config["Length_Limit"],
        bvalue, completeness_table[0][1], completeness_string)
    filename = smoother_filename[:-4] + '.xml'
    if os.path.exists(filename) and not overwrite:
        print '%s already created, not overwriting!' % filename
        return
    smoother = SmoothedSeismicity(
        [105., 160., 0.1, -47., -5, 0.1, 0., 20., 20.],
        bvalue=smoothing_config['bvalue'])
    print 'Running smoothing'
    smoothed_grid = smoother.run_analysis(
        catalogue_comp,
        smoothing_config,
        completeness_table=completeness_table)

    smoother.write_to_csv(smoother_filename)

    from openquake.hazardlib.nrml import SourceModelParser, write, NAMESPACE
    from openquake.baselib.node import Node
    from openquake.hazardlib import nrml
    from openquake.hazardlib.sourcewriter import obj_to_node
    # Build nrml input file of point sources
    source_list = []
    #i=0
    min_mag = 4.5
    max_mag = 7.8
    bval = bvalue  # just define as 1 for time being
    # Read in data again to solve number fomatting issue in smoother.data
    # For some reason it just returns 0 for all a values
    try:
        data = np.genfromtxt(smoother_filename, delimiter=',', skip_header=1)
    except ValueError:
        print 'Something wrong with file %s' % smoother_filename
        sys.exit()
    tom = PoissonTOM(
        50)  # Dummy temporal occurence model for building pt sources
    msr = Leonard2014_SCR()
    for j in range(len(data[:, 4])):
        #    print smoother.data[j,:]
        identifier = 'FSS' + str(j) + '_' + str(run)
        name = 'Frankel' + str(j) + '_' + str(run)
        point = Point(data[j, 0], data[j, 1], data[j, 2])
        annual_rate = data[j, 4] / (yend - ystart + 1)
        aval = np.log10(annual_rate) + smoothing_config[
            'bvalue'] * completeness_table[0][1]
        mfd = TruncatedGRMFD(min_mag, max_mag, 0.1, aval, bval)
        hypo_depth_dist = PMF([(0.5, 10.0), (0.25, 5.0), (0.25, 15.0)])
        nodal_plane_dist = PMF([(0.3, NodalPlane(0, 30, 90)),
                                (0.2, NodalPlane(90, 30, 90)),
                                (0.3, NodalPlane(180, 30, 90)),
                                (0.2, NodalPlane(270, 30, 90))])
        point_source = PointSource(identifier, name, 'Non_cratonic', mfd, 2,
                                   msr, 2.0, tom, 0.1, 20.0, point,
                                   nodal_plane_dist, hypo_depth_dist)
        source_list.append(point_source)

    nodes = list(map(obj_to_node, sorted(source_list)))
    source_model = Node("sourceModel", {"name": name}, nodes=nodes)
    with open(filename, 'wb') as f:
        nrml.write([source_model], f, '%s', xmlns=NAMESPACE)

    # Creating a basemap - input a cconfiguration and (if desired) a title
    title = 'Smoothed seismicity rate for learning \nperiod %i 2017, Mmin = %.1f' % (
        completeness_table[0][0], completeness_table[0][1])
    basemap1 = HMTKBaseMap(map_config, 'Smoothed seismicity rate')
    # Adding the smoothed grip to the basemap
    sym = (2., 3., 'cx')
    x, y = basemap1.m(smoother.data[:, 0], smoother.data[:, 1])
    basemap1.m.scatter(x,
                       y,
                       marker='s',
                       c=np.log10(smoother.data[:, 4]),
                       cmap=plt.cm.coolwarm,
                       zorder=10,
                       lw=0,
                       vmin=-6.5,
                       vmax=1.5)
    basemap1.m.drawcoastlines(linewidth=1, zorder=50)  # Add coastline on top
    basemap1.m.drawmeridians(
        np.arange(map_config['min_lat'], map_config['max_lat'], 5))
    basemap1.m.drawparallels(
        np.arange(map_config['min_lon'], map_config['max_lon'], 5))
    plt.colorbar(label='log10(Smoothed rate per cell)')
    plt.legend()
    figname = smoother_filename[:-4] + '_smoothed_rates_map.png'
    plt.savefig(figname)
Пример #16
0
    'min_lon': -95.0,
    'max_lon': -25.0,
    'min_lat': -65.0,
    'max_lat': 25.0,
    'resolution': 'l'
}
#_l = [ 118.5,  124,  res,  20.0,   26.5,  res,    0,   300,   300]
#_l = [ -95.,  -25,  res,  -65,   25,  res,    0,   800,   800]
_l = [-80, -30, res, -37, 13, res, 0, 30, 30]
grid_limits = Grid.make_from_list(_l)

nx = round((_l[1] - _l[0]) / _l[2], 0)
ny = round((_l[4] - _l[3]) / _l[5], 0)
grid_shape = (nx, ny)
print grid_shape
model = SmoothedSeismicity(grid_limits, bvalue=1.0)

# Time-varying completeness
comp_table = np.array([[1980., 3.5], [1970., 4.5], [1960., 5.0]])

if model_name == 'hmtk_sa3':
    comp_table = np.array([[1986, 3.], [1986, 3.5], [1986, 4.], [1960, 4.5],
                           [1958, 5.], [1958, 5.5], [1927, 6.], [1898, 6.5],
                           [1885, 7.], [1885, 7.5], [1885, 8.]])
else:
    comp_table = np.array([[1980, 3.], [1975, 3.5], [1975, 4.], [1965, 4.5],
                           [1965, 5.], [1860, 5.5], [1860, 6.]])

#config
config = {
    'Length_Limit': 3.,
Пример #17
0
#bvalue = 0.835
#upper
#bvalue = 0.747
#bvalue= 0.727
#bvalue= 1.062
#lower
#bvalue = 0.892
#bvalue = 0.944
#bvalue = 1.355

llcrnrlat = 35
urcrnrlat = 83.5
llcrnrlon = -160
urcrnrlon = -51

smoother = SmoothedSeismicity([llcrnrlon,urcrnrlon,0.1,llcrnrlat,urcrnrlat,0.1,0.,20., 20.], bvalue = bvalue)
#smoothed_grid = smoother.run_analysis(source_model.sources[0].catalogue, smoothing_config, completeness_table=completeness_table_a)

print 'Running smoothing'
smoothed_grid = smoother.run_analysis(source.catalogue, smoothing_config, completeness_table=completeness_table_a)
smoother_filename = 'smoothed_%i_%i_mmin_%.1f_%.3f_0.1.csv' % (smoothing_config["BandWidth"], smoothing_config["Length_Limit"],
                                                               completeness_table_a[0][-1], bvalue)

print 'Writing to file'
smoother.write_to_csv(smoother_filename)
"""

from openquake.hazardlib.nrml import SourceModelParser, write, NAMESPACE
from openquake.baselib.node import Node
from openquake.hazardlib import nrml
from openquake.hazardlib.sourcewriter import obj_to_node