Пример #1
0
    def like_me(self, **overrides):
        if 'center' in overrides:
            return super().like_me(**overrides)
        for i, coord in enumerate(('x', 'y', 'z')):
            if coord in overrides:
                overrides['center[{}]'.format(i)] = overrides[coord]
                del overrides[coord]

        return self.from_parameters(updated(self.parameters, overrides))
Пример #2
0
 def test_updated_keep_None(self):
     input_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
     update_dict = {'c': 5, 'd': None, 'e': 6}
     output_dict = updated(input_dict, update_dict, False)
     self.assertEqual(input_dict, {'a': 1, 'b': 2, 'c': 3, 'd': 4})
     self.assertEqual(output_dict, {
         'a': 1,
         'b': 2,
         'c': 5,
         'd': None,
         'e': 6
     })
Пример #3
0
def update_metadata(a,
                    medium_index=None,
                    illum_wavelen=None,
                    illum_polarization=None,
                    normals=None,
                    noise_sd=None):
    """Returns a copy of an image with updated metadata in its 'attrs' field.

    Parameters
    ----------
    a : xarray.DataArray
        image to update.
    medium_index : float
        Updated refractive index of the medium in the image.
    illum_wavelen : float
        Updated wavelength of illumination in the image.
    illum_polarization : list-like
        Updated polarization of illumination in the image.
    noise_sd : float
        standard deviation of Gaussian noise in the image.

    Returns
    -------
    b : xarray.DataArray
        copy of input image with updated metadata.
    """
    if normals is not None:
        raise ValueError(NORMALS_DEPRECATION_MESSAGE)
    attrlist = {
        'medium_index': medium_index,
        'illum_wavelen': dict_to_array(a, illum_wavelen),
        'illum_polarization': dict_to_array(a, to_vector(illum_polarization)),
        'noise_sd': dict_to_array(a, noise_sd)
    }
    b = a.copy()
    b.attrs = updated(b.attrs, attrlist)

    for attr in attrlist:
        if not hasattr(b, attr):
            b.attrs[attr] = None
    return b
Пример #4
0
def detector_points(coords={}, x=None, y=None, z=None, r=None, theta=None,
                    phi=None, normals=None, name=None):
    """
    Returns a one-dimensional set of detector coordinates at which scattering
    calculations are to be done.

    Parameters
    ----------
    coords : dict, optional
        Dictionary of detector coordinates. Default: empty dictionary.
        Typical usage should not pass this argument, giving other parameters
        (Cartesian `x`, `y`, and `z` or polar `r`, `theta`, and `phi`
        coordinates) instead.
    x, y : int or array_like, optional
        Cartesian x and y coordinates of detectors.
    z : int or array_like, optional
        Cartesian z coordinates of detectors. If not specified, assume `z` = 0.
    r : int or array_like, optional
        Spherical polar radial coordinates of detectors. If not specified,
        assume `r` = infinity (far-field).
    theta : int or array_like, optional
        Spherical polar coordinates (polar angle from z axis) of detectors.
    phi : int or array_like, optional
        Spherical polar azimuthal coodinates of detectors.
    name : string

    Returns
    -------
    grid : DataArray object
        DataArray of zeros with calculated coordinates.

    Notes
    -----
    Specify either the Cartesian or the polar coordinates of your detector.
    This may be helpful for modeling static light scattering calculations.
    Use detector_grid() to specify coordinates of a grid of pixels (e.g.,
    a digital camera.)

    """
    if normals is not None:
        raise ValueError(NORMALS_DEPRECATION_MESSAGE)
    updatelist = {'x': x, 'y': y, 'z': z, 'r': r, 'theta': theta, 'phi': phi}
    coords = updated(coords, updatelist)
    if 'x' in coords and 'y' in coords:
        keys = ['x', 'y', 'z']
        if coords.get('z') is None:
            coords['z'] = 0

    elif 'theta' in coords and 'phi' in coords:
        keys = ['r', 'theta', 'phi']
        if coords.get('r') is None:
            coords['r'] = np.inf
    else:
        raise CoordSysError()

    if name is None:
        name = 'data'

    coords = repeat_sing_dims(coords, keys)
    coords = updated(coords, {key: ('point', coords[key]) for key in keys})
    return xr.DataArray(np.zeros(len(coords[keys[0]][1])), dims=['point'],
                        coords=coords, name=name)
Пример #5
0
 def test_kw_takes_priority(self):
     input_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
     update_dict = {'c': 5, 'd': None, 'e': 6}
     output_dict = updated(input_dict, update_dict, b=7, e=8)
     self.assertEqual(input_dict, {'a': 1, 'b': 2, 'c': 3, 'd': 4})
     self.assertEqual(output_dict, {'a': 1, 'b': 7, 'c': 5, 'd': 4, 'e': 8})
Пример #6
0
 def test_updated_from_kw(self):
     input_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
     output_dict = updated(input_dict, b=7, c=None, e=8)
     self.assertEqual(input_dict, {'a': 1, 'b': 2, 'c': 3, 'd': 4})
     self.assertEqual(output_dict, {'a': 1, 'b': 7, 'c': 3, 'd': 4, 'e': 8})