Пример #1
0
class HeterogeneousColumnTypes(HomogeneousColumnTypes):
    """
    Tests for data formats that all dataset to have varied types
    """

    def init_data(self):
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.gender, self.age = ['M','M','F'], [10,16,12]
        self.weight, self.height = [15,18,10], [0.8,0.6,0.8]
        self.table = Dataset({'Gender':self.gender, 'Age':self.age,
                              'Weight':self.weight, 'Height':self.height},
                             kdims=self.kdims, vdims=self.vdims)

        self.alias_kdims = [('gender', 'Gender'), ('age', 'Age')]
        self.alias_vdims = [('weight', 'Weight'), ('height', 'Height')]
        self.alias_table = Dataset({'gender':self.gender, 'age':self.age,
                                    'weight':self.weight, 'height':self.height},
                                   kdims=self.alias_kdims, vdims=self.alias_vdims)

        super(HeterogeneousColumnTypes, self).init_data()
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.dataset_ht = Dataset({'x':self.xs, 'y':self.ys},
                                  kdims=['x'], vdims=['y'])

    # Test the constructor to be supported by all interfaces supporting
    # heterogeneous column types.

    def test_dataset_ndelement_init_ht(self):
        "Tests support for heterogeneous NdElement (backwards compatibility)"
        dataset = Dataset(NdElement(zip(self.xs, self.ys), kdims=['x'], vdims=['y']))
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dataframe_init_ht(self):
        "Tests support for heterogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'y':self.ys}), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dataframe_init_ht_alias(self):
        "Tests support for heterogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'y':self.ys}),
                          kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    # Test literal formats

    def test_dataset_expanded_dimvals_ht(self):
        self.assertEqual(self.table.dimension_values('Gender', expanded=False),
                         np.array(['M', 'F']))

    def test_dataset_implicit_indexing_init(self):
        dataset = Dataset(self.ys, kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_tuple_init(self):
        dataset = Dataset((self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_tuple_init_alias(self):
        dataset = Dataset((self.xs, self.ys), kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_simple_zip_init(self):
        dataset = Dataset(zip(self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_simple_zip_init_alias(self):
        dataset = Dataset(zip(self.xs, self.ys), kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_zip_init(self):
        dataset = Dataset(zip(self.gender, self.age,
                              self.weight, self.height),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_zip_init_alias(self):
        dataset = self.alias_table.clone(zip(self.gender, self.age,
                                             self.weight, self.height))
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_odict_init(self):
        dataset = Dataset(OrderedDict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_odict_init_alias(self):
        dataset = Dataset(OrderedDict(zip(self.xs, self.ys)),
                          kdims=[('a', 'A')], vdims=[('b', 'B')])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dict_init(self):
        dataset = Dataset(dict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    # Operations

    def test_dataset_redim_with_alias_dframe(self):
        test_df = pd.DataFrame({'x': range(10), 'y': range(0,20,2)})
        dataset = Dataset(test_df, kdims=[('x', 'X-label')], vdims=['y'])
        redim_df = pd.DataFrame({'X': range(10), 'y': range(0,20,2)})
        dataset_redim = Dataset(redim_df, kdims=['X'], vdims=['y'])
        self.assertEqual(dataset.redim(**{'X-label':'X'}), dataset_redim)
        self.assertEqual(dataset.redim(**{'x':'X'}), dataset_redim)

    def test_dataset_sort_vdim_ht(self):
        dataset = Dataset({'x':self.xs, 'y':-self.ys},
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset({'x': self.xs[::-1], 'y':-self.ys[::-1]},
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y'), dataset_sorted)

    def test_dataset_sort_string_ht(self):
        dataset_sorted = Dataset({'Gender':['F', 'M', 'M'], 'Age':[12, 10, 16],
                                  'Weight':[10,15,18], 'Height':[0.8,0.8,0.6]},
                                 kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(self.table.sort(), dataset_sorted)

    def test_dataset_sample_ht(self):
        samples = self.dataset_ht.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_dataset_reduce_ht(self):
        reduced = Dataset({'Age':self.age, 'Weight':self.weight, 'Height':self.height},
                          kdims=self.kdims[1:], vdims=self.vdims)
        self.assertEqual(self.table.reduce(['Gender'], np.mean), reduced)

    def test_dataset_1D_reduce_ht(self):
        self.assertEqual(self.dataset_ht.reduce('x', np.mean), np.float64(0.5))

    def test_dataset_2D_reduce_ht(self):
        reduced = Dataset({'Weight':[14.333333333333334], 'Height':[0.73333333333333339]},
                          kdims=[], vdims=self.vdims)
        self.assertEqual(self.table.reduce(function=np.mean), reduced)

    def test_dataset_2D_partial_reduce_ht(self):
        dataset = Dataset({'x':self.xs, 'y':self.ys, 'z':self.zs},
                          kdims=['x', 'y'], vdims=['z'])
        reduced = Dataset({'x':self.xs, 'z':self.zs},
                          kdims=['x'], vdims=['z'])
        self.assertEqual(dataset.reduce(['y'], np.mean), reduced)

    def test_dataset_aggregate_ht(self):
        aggregated = Dataset({'Gender':['M', 'F'], 'Weight':[16.5, 10], 'Height':[0.7, 0.8]},
                             kdims=self.kdims[:1], vdims=self.vdims)
        self.compare_dataset(self.table.aggregate(['Gender'], np.mean), aggregated)

    def test_dataset_aggregate_ht_alias(self):
        aggregated = Dataset({'gender':['M', 'F'], 'weight':[16.5, 10], 'height':[0.7, 0.8]},
                             kdims=self.alias_kdims[:1], vdims=self.alias_vdims)
        self.compare_dataset(self.alias_table.aggregate('Gender', np.mean), aggregated)

    def test_dataset_2D_aggregate_partial_ht(self):
        dataset = Dataset({'x':self.xs, 'y':self.ys, 'z':self.zs},
                          kdims=['x', 'y'], vdims=['z'])
        reduced = Dataset({'x':self.xs, 'z':self.zs},
                          kdims=['x'], vdims=['z'])
        self.assertEqual(dataset.aggregate(['x'], np.mean), reduced)

    def test_dataset_groupby(self):
        group1 = {'Age':[10,16], 'Weight':[15,18], 'Height':[0.8,0.6]}
        group2 = {'Age':[12], 'Weight':[10], 'Height':[0.8]}
        grouped = HoloMap([('M', Dataset(group1, kdims=['Age'], vdims=self.vdims)),
                           ('F', Dataset(group2, kdims=['Age'], vdims=self.vdims))],
                          kdims=['Gender'])
        self.assertEqual(self.table.groupby(['Gender']), grouped)

    def test_dataset_groupby_alias(self):
        group1 = {'age':[10,16], 'weight':[15,18], 'height':[0.8,0.6]}
        group2 = {'age':[12], 'weight':[10], 'height':[0.8]}
        grouped = HoloMap([('M', Dataset(group1, kdims=[('age', 'Age')],
                                         vdims=self.alias_vdims)),
                           ('F', Dataset(group2, kdims=[('age', 'Age')],
                                         vdims=self.alias_vdims))],
                          kdims=[('gender', 'Gender')])
        self.assertEqual(self.alias_table.groupby('Gender'), grouped)

    def test_dataset_groupby_dynamic(self):
        grouped_dataset = self.table.groupby('Gender', dynamic=True)
        self.assertEqual(grouped_dataset['M'],
                         self.table.select(Gender='M').reindex(['Age']))
        self.assertEqual(grouped_dataset['F'],
                         self.table.select(Gender='F').reindex(['Age']))

    def test_dataset_groupby_dynamic_alias(self):
        grouped_dataset = self.alias_table.groupby('Gender', dynamic=True)
        self.assertEqual(grouped_dataset['M'],
                         self.alias_table.select(gender='M').reindex(['Age']))
        self.assertEqual(grouped_dataset['F'],
                         self.alias_table.select(gender='F').reindex(['Age']))

    def test_dataset_add_dimensions_value_ht(self):
        table = self.dataset_ht.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(table.shape[0]))

    def test_dataset_add_dimensions_value_ht_alias(self):
        table = self.dataset_ht.add_dimension(('z', 'Z'), 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(table.shape[0]))

    def test_dataset_add_dimensions_values_ht(self):
        table = self.dataset_ht.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    # Indexing

    def test_dataset_index_row_gender_female(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        row = self.table['F',:]
        self.assertEquals(row, indexed)

    def test_dataset_index_rows_gender_male(self):
        row = self.table['M',:]
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_select_rows_gender_male(self):
        row = self.table.select(Gender='M')
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_select_rows_gender_male_alias(self):
        row = self.alias_table.select(Gender='M')
        alias_row = self.alias_table.select(gender='M')
        indexed = Dataset({'gender':['M', 'M'], 'age':[10, 16],
                           'weight':[15,18], 'height':[0.8,0.6]},
                          kdims=self.alias_kdims, vdims=self.alias_vdims)
        self.assertEquals(row, indexed)
        self.assertEquals(alias_row, indexed)

    def test_dataset_index_row_age(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(self.table[:, 12], indexed)

    def test_dataset_index_item_table(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(self.table['F', 12], indexed)

    def test_dataset_index_value1(self):
        self.assertEquals(self.table['F', 12, 'Weight'], 10)

    def test_dataset_index_value2(self):
        self.assertEquals(self.table['F', 12, 'Height'], 0.8)

    def test_dataset_index_column_ht(self):
        self.compare_arrays(self.dataset_ht['y'], self.ys)

    def test_dataset_boolean_index(self):
        row = self.table[np.array([True, True, False])]
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_value_dim_index(self):
        row = self.table[:, :, 'Weight']
        indexed = Dataset({'Gender':['M', 'M', 'F'], 'Age':[10, 16, 12],
                           'Weight':[15,18, 10]},
                          kdims=self.kdims, vdims=self.vdims[:1])
        self.assertEquals(row, indexed)

    def test_dataset_value_dim_scalar_index(self):
        row = self.table['M', 10, 'Weight']
        self.assertEquals(row, 15)

    # Casting

    def test_dataset_array_ht(self):
        self.assertEqual(self.dataset_ht.array(),
                         np.column_stack([self.xs, self.ys]))
Пример #2
0
class HomogeneousColumnTypes(object):
    """
    Tests for data formats that require all dataset to have the same
    type (e.g numpy arrays)
    """

    def setUp(self):
        self.restore_datatype = Dataset.datatype
        self.data_instance_type = None

    def init_data(self):
        self.xs = range(11)
        self.xs_2 = [el**2 for el in self.xs]

        self.y_ints = [i*2 for i in range(11)]
        self.dataset_hm = Dataset((self.xs, self.y_ints),
                                  kdims=['x'], vdims=['y'])
        self.dataset_hm_alias = Dataset((self.xs, self.y_ints),
                                        kdims=[('x', 'X')], vdims=[('y', 'Y')])

    def tearDown(self):
        Dataset.datatype = self.restore_datatype

    # Test the array constructor (homogenous data) to be supported by
    # all interfaces.

    def test_dataset_array_init_hm(self):
        "Tests support for arrays (homogeneous)"
        dataset = Dataset(np.column_stack([self.xs, self.xs_2]),
                          kdims=['x'], vdims=['x2'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_ndelement_init_hm(self):
        "Tests support for homogeneous NdElement (backwards compatibility)"
        dataset = Dataset(NdElement(zip(self.xs, self.xs_2),
                                    kdims=['x'], vdims=['x2']))
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dataframe_init_hm(self):
        "Tests support for homogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
                          kdims=['x'], vdims=[ 'x2'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dataframe_init_hm_alias(self):
        "Tests support for homogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
                          kdims=[('x', 'X-label')], vdims=[('x2', 'X2-label')])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    # Properties and information

    def test_dataset_shape(self):
        self.assertEqual(self.dataset_hm.shape, (11, 2))

    def test_dataset_range(self):
        self.assertEqual(self.dataset_hm.range('y'), (0, 20))

    def test_dataset_closest(self):
        closest = self.dataset_hm.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    # Operations

    def test_dataset_sort_vdim_hm(self):
        xs_2 = np.array(self.xs_2)
        dataset = Dataset(np.column_stack([self.xs, -xs_2]),
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y'), dataset_sorted)

    def test_dataset_sort_vdim_hm_alias(self):
        xs_2 = np.array(self.xs_2)
        dataset = Dataset(np.column_stack([self.xs, -xs_2]),
                          kdims=[('x', 'X-label')], vdims=[('y', 'Y-label')])
        dataset_sorted = Dataset(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                                 kdims=[('x', 'X-label')], vdims=[('y', 'Y-label')])
        self.assertEqual(dataset.sort('y'), dataset_sorted)
        self.assertEqual(dataset.sort('Y-label'), dataset_sorted)

    def test_dataset_redim_hm_kdim(self):
        redimmed = self.dataset_hm.redim(x='Time')
        self.assertEqual(redimmed.dimension_values('Time'),
                         self.dataset_hm.dimension_values('x'))

    def test_dataset_redim_hm_kdim_alias(self):
        redimmed = self.dataset_hm_alias.redim(x='Time')
        self.assertEqual(redimmed.dimension_values('Time'),
                         self.dataset_hm_alias.dimension_values('x'))

    def test_dataset_redim_hm_vdim(self):
        redimmed = self.dataset_hm.redim(y='Value')
        self.assertEqual(redimmed.dimension_values('Value'),
                         self.dataset_hm.dimension_values('y'))

    def test_dataset_redim_hm_vdim_alias(self):
        redimmed = self.dataset_hm_alias.redim(y=Dimension(('val', 'Value')))
        self.assertEqual(redimmed.dimension_values('Value'),
                         self.dataset_hm_alias.dimension_values('y'))

    def test_dataset_sample_hm(self):
        samples = self.dataset_hm.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))

    def test_dataset_sample_hm_alias(self):
        samples = self.dataset_hm_alias.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))

    def test_dataset_array_hm(self):
        self.assertEqual(self.dataset_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))

    def test_dataset_array_hm_alias(self):
        self.assertEqual(self.dataset_hm_alias.array(),
                         np.column_stack([self.xs, self.y_ints]))

    def test_dataset_add_dimensions_value_hm(self):
        table = self.dataset_hm.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(table.shape[0]))

    def test_dataset_add_dimensions_values_hm(self):
        table =  self.dataset_hm.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    def test_dataset_slice_hm(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.dataset_hm[5:9], dataset_slice)

    def test_dataset_slice_hm_alias(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertEqual(self.dataset_hm_alias[5:9], dataset_slice)

    def test_dataset_slice_fn_hm(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.dataset_hm[lambda x: (x >= 5) & (x < 9)], dataset_slice)

    def test_dataset_1D_reduce_hm(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints}, kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.reduce('x', np.mean), 10)

    def test_dataset_1D_reduce_hm_alias(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints}, kdims=[('x', 'X')],
                          vdims=[('y', 'Y')])
        self.assertEqual(dataset.reduce('X', np.mean), 10)

    def test_dataset_2D_reduce_hm(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z':[el ** 2 for el in self.y_ints]},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(np.array(dataset.reduce(['x', 'y'], np.mean)),
                         np.array(140))

    def test_dataset_2D_aggregate_partial_hm(self):
        z_ints = [el**2 for el in self.y_ints]
        dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z':z_ints},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(dataset.aggregate(['x'], np.mean),
                         Dataset({'x':self.xs, 'z':z_ints}, kdims=['x'], vdims=['z']))

    # Indexing

    def test_dataset_index_column_idx_hm(self):
        self.assertEqual(self.dataset_hm[5], self.y_ints[5])

    def test_dataset_index_column_ht(self):
        self.compare_arrays(self.dataset_hm['y'], self.y_ints)

    def test_dataset_array_ht(self):
        self.assertEqual(self.dataset_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))
Пример #3
0
 def test_dataset_scalar_array(self):
     ds = Dataset({'A': 1, 'B': np.arange(10)}, kdims=['A', 'B'])
     self.assertEqual(ds.array(), np.column_stack([np.ones(10), np.arange(10)]))
Пример #4
0
class HomogeneousColumnTests(object):
    """
    Tests for data formats that require all dataset to have the same
    type (e.g numpy arrays)
    """

    def init_column_data(self):
        self.xs = np.array(range(11))
        self.xs_2 = self.xs**2

        self.y_ints = self.xs*2
        self.dataset_hm = Dataset((self.xs, self.y_ints),
                                  kdims=['x'], vdims=['y'])
        self.dataset_hm_alias = Dataset((self.xs, self.y_ints),
                                        kdims=[('x', 'X')], vdims=[('y', 'Y')])

    # Test the array constructor (homogeneous data) to be supported by
    # all interfaces.

    def test_dataset_array_init_hm(self):
        dataset = Dataset(np.column_stack([self.xs, self.xs_2]),
                          kdims=['x'], vdims=['x2'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_array_init_hm_tuple_dims(self):
        dataset = Dataset(np.column_stack([self.xs, self.xs_2]),
                          kdims=[('x', 'X')], vdims=[('x2', 'X2')])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_dataframe_init_hm(self):
        "Tests support for homogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
                          kdims=['x'], vdims=['x2'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_dataframe_init_hm_alias(self):
        "Tests support for homogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
                          kdims=[('x', 'X-label')], vdims=[('x2', 'X2-label')])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_empty_list_init(self):
        dataset = Dataset([], kdims=['x'], vdims=['y'])
        for d in 'xy':
            self.assertEqual(dataset.dimension_values(d), np.array([]))

    def test_dataset_dict_dim_not_found_raises_on_array(self):
        with self.assertRaises(ValueError):
            Dataset({'x': np.zeros(5)}, kdims=['Test'], vdims=[])

    def test_dataset_dict_dim_not_found_raises_on_scalar(self):
        with self.assertRaises(ValueError):
            Dataset({'x': 1}, kdims=['Test'], vdims=[])

    # Properties and information

    def test_dataset_shape(self):
        self.assertEqual(self.dataset_hm.shape, (11, 2))

    def test_dataset_range(self):
        self.assertEqual(self.dataset_hm.range('y'), (0, 20))

    def test_dataset_closest(self):
        closest = self.dataset_hm.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    # Operations

    def test_dataset_sort_hm(self):
        ds = Dataset(([2, 2, 1], [2,1,2], [0.1, 0.2, 0.3]),
                     kdims=['x', 'y'], vdims=['z']).sort()
        ds_sorted = Dataset(([1, 2, 2], [2, 1, 2], [0.3, 0.2, 0.1]),
                            kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(ds.sort(), ds_sorted)

    def test_dataset_sort_reverse_hm(self):
        ds = Dataset(([2, 1, 2, 1], [2, 2, 1, 1], [0.1, 0.2, 0.3, 0.4]),
                     kdims=['x', 'y'], vdims=['z'])
        ds_sorted = Dataset(([2, 2, 1, 1], [2, 1, 2, 1], [0.1, 0.3, 0.2, 0.4]),
                            kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(ds.sort(reverse=True), ds_sorted)

    def test_dataset_sort_vdim_hm(self):
        xs_2 = np.array(self.xs_2)
        dataset = Dataset(np.column_stack([self.xs, -xs_2]),
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y'), dataset_sorted)

    def test_dataset_sort_reverse_vdim_hm(self):
        xs_2 = np.array(self.xs_2)
        dataset = Dataset(np.column_stack([self.xs, -xs_2]),
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset(np.column_stack([self.xs, -xs_2]),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y', reverse=True), dataset_sorted)

    def test_dataset_sort_vdim_hm_alias(self):
        xs_2 = np.array(self.xs_2)
        dataset = Dataset(np.column_stack([self.xs, -xs_2]),
                          kdims=[('x', 'X-label')], vdims=[('y', 'Y-label')])
        dataset_sorted = Dataset(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                                 kdims=[('x', 'X-label')], vdims=[('y', 'Y-label')])
        self.assertEqual(dataset.sort('y'), dataset_sorted)
        self.assertEqual(dataset.sort('Y-label'), dataset_sorted)

    def test_dataset_redim_hm_kdim(self):
        redimmed = self.dataset_hm.redim(x='Time')
        self.assertEqual(redimmed.dimension_values('Time'),
                         self.dataset_hm.dimension_values('x'))

    def test_dataset_redim_hm_kdim_range_aux(self):
        redimmed = self.dataset_hm.redim.range(x=(-100,3))
        self.assertEqual(redimmed.kdims[0].range, (-100,3))

    def test_dataset_redim_hm_kdim_soft_range_aux(self):
        redimmed = self.dataset_hm.redim.soft_range(x=(-100,30))
        self.assertEqual(redimmed.kdims[0].soft_range, (-100,30))

    def test_dataset_redim_hm_kdim_alias(self):
        redimmed = self.dataset_hm_alias.redim(x='Time')
        self.assertEqual(redimmed.dimension_values('Time'),
                         self.dataset_hm_alias.dimension_values('x'))

    def test_dataset_redim_hm_vdim(self):
        redimmed = self.dataset_hm.redim(y='Value')
        self.assertEqual(redimmed.dimension_values('Value'),
                         self.dataset_hm.dimension_values('y'))

    def test_dataset_redim_hm_vdim_alias(self):
        redimmed = self.dataset_hm_alias.redim(y=Dimension(('val', 'Value')))
        self.assertEqual(redimmed.dimension_values('Value'),
                         self.dataset_hm_alias.dimension_values('y'))

    def test_dataset_sample_hm(self):
        samples = self.dataset_hm.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))

    def test_dataset_sample_hm_alias(self):
        samples = self.dataset_hm_alias.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))

    def test_dataset_array_hm(self):
        self.assertEqual(self.dataset_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))

    def test_dataset_array_hm_alias(self):
        self.assertEqual(self.dataset_hm_alias.array(),
                         np.column_stack([self.xs, self.y_ints]))

    def test_dataset_add_dimensions_value_hm(self):
        table = self.dataset_hm.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(table.shape[0]))

    def test_dataset_add_dimensions_values_hm(self):
        table =  self.dataset_hm.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    def test_dataset_slice_hm(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.dataset_hm[5:9], dataset_slice)

    def test_dataset_slice_hm_alias(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertEqual(self.dataset_hm_alias[5:9], dataset_slice)

    def test_dataset_slice_fn_hm(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.dataset_hm[lambda x: (x >= 5) & (x < 9)], dataset_slice)

    def test_dataset_1D_reduce_hm(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints}, kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.reduce('x', np.mean), 10)

    def test_dataset_1D_reduce_hm_alias(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints}, kdims=[('x', 'X')],
                          vdims=[('y', 'Y')])
        self.assertEqual(dataset.reduce('X', np.mean), 10)

    def test_dataset_2D_reduce_hm(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z':[el ** 2 for el in self.y_ints]},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(np.array(dataset.reduce(['x', 'y'], np.mean)),
                         np.array(140))

    def test_dataset_2D_aggregate_partial_hm(self):
        z_ints = [el**2 for el in self.y_ints]
        dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z':z_ints},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(dataset.aggregate(['x'], np.mean),
                         Dataset({'x':self.xs, 'z':z_ints}, kdims=['x'], vdims=['z']))

    # Indexing

    def test_dataset_index_column_idx_hm(self):
        self.assertEqual(self.dataset_hm[5], self.y_ints[5])

    def test_dataset_index_column_ht(self):
        self.compare_arrays(self.dataset_hm['y'], self.y_ints)

    def test_dataset_array_ht(self):
        self.assertEqual(self.dataset_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))

    # Tabular indexing

    def test_dataset_iloc_slice_rows(self):
        sliced = self.dataset_hm.iloc[1:4]
        table = Dataset({'x': self.xs[1:4], 'y': self.y_ints[1:4]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_slice_rows_slice_cols(self):
        sliced = self.dataset_hm.iloc[1:4, 1:]
        table = Dataset({'y': self.y_ints[1:4]}, kdims=[], vdims=['y'],
                        datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_slice_rows_list_cols(self):
        sliced = self.dataset_hm.iloc[1:4, [0, 1]]
        table = Dataset({'x': self.xs[1:4], 'y': self.y_ints[1:4]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_slice_rows_index_cols(self):
        sliced = self.dataset_hm.iloc[1:4, 1]
        table = Dataset({'y': self.y_ints[1:4]}, kdims=[], vdims=['y'],
                        datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows(self):
        sliced = self.dataset_hm.iloc[[0, 2]]
        table = Dataset({'x': self.xs[[0, 2]], 'y': self.y_ints[[0, 2]]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows_list_cols(self):
        sliced = self.dataset_hm.iloc[[0, 2], [0, 1]]
        table = Dataset({'x': self.xs[[0, 2]], 'y': self.y_ints[[0, 2]]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows_list_cols_by_name(self):
        sliced = self.dataset_hm.iloc[[0, 2], ['x', 'y']]
        table = Dataset({'x': self.xs[[0, 2]], 'y': self.y_ints[[0, 2]]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows_slice_cols(self):
        sliced = self.dataset_hm.iloc[[0, 2], slice(0, 2)]
        table = Dataset({'x': self.xs[[0, 2]], 'y': self.y_ints[[0, 2]]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_index_rows_index_cols(self):
        indexed = self.dataset_hm.iloc[1, 1]
        self.assertEqual(indexed, self.y_ints[1])

    def test_dataset_iloc_index_rows_slice_cols(self):
        indexed = self.dataset_hm.iloc[1, :2]
        table = Dataset({'x':self.xs[[1]],  'y':self.y_ints[[1]]},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(indexed, table)

    def test_dataset_iloc_list_cols(self):
        sliced = self.dataset_hm.iloc[:, [0, 1]]
        table = Dataset({'x':self.xs,  'y':self.y_ints},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_cols_by_name(self):
        sliced = self.dataset_hm.iloc[:, ['x', 'y']]
        table = Dataset({'x':self.xs,  'y':self.y_ints},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_ellipsis_list_cols(self):
        sliced = self.dataset_hm.iloc[..., [0, 1]]
        table = Dataset({'x':self.xs,  'y':self.y_ints},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_ellipsis_list_cols_by_name(self):
        sliced = self.dataset_hm.iloc[..., ['x', 'y']]
        table = Dataset({'x':self.xs,  'y':self.y_ints},
                        kdims=['x'], vdims=['y'], datatype=['dictionary'])
        self.assertEqual(sliced, table)

    def test_dataset_get_array(self):
        arr = self.dataset_hm.array()
        self.assertEqual(arr, np.column_stack([self.xs, self.y_ints]))

    def test_dataset_get_array_by_dimension(self):
        arr = self.dataset_hm.array(['x'])
        self.assertEqual(arr, self.xs[:, np.newaxis])

    @pd_skip
    def test_dataset_get_dframe(self):
        df = self.dataset_hm.dframe()
        self.assertEqual(df.x.values, self.xs)
        self.assertEqual(df.y.values, self.y_ints)

    @pd_skip
    def test_dataset_get_dframe_by_dimension(self):
        df = self.dataset_hm.dframe(['x'])
        self.assertEqual(df, pd.DataFrame({'x': self.xs}, dtype=df.dtypes[0]))
Пример #5
0
class HeterogeneousColumnTests(HomogeneousColumnTests):
    """
    Tests for data formats that allow dataset to have varied types
    """

    def init_column_data(self):
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.gender, self.age = np.array(['M','M','F']), np.array([10,16,12])
        self.weight, self.height = np.array([15,18,10]), np.array([0.8,0.6,0.8])
        self.table = Dataset({'Gender':self.gender, 'Age':self.age,
                              'Weight':self.weight, 'Height':self.height},
                             kdims=self.kdims, vdims=self.vdims)

        self.alias_kdims = [('gender', 'Gender'), ('age', 'Age')]
        self.alias_vdims = [('weight', 'Weight'), ('height', 'Height')]
        self.alias_table = Dataset({'gender':self.gender, 'age':self.age,
                                    'weight':self.weight, 'height':self.height},
                                   kdims=self.alias_kdims, vdims=self.alias_vdims)

        super(HeterogeneousColumnTests, self).init_column_data()
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.dataset_ht = Dataset({'x':self.xs, 'y':self.ys},
                                  kdims=['x'], vdims=['y'])

    # Test the constructor to be supported by all interfaces supporting
    # heterogeneous column types.

    @pd_skip
    def test_dataset_dataframe_init_ht(self):
        "Tests support for heterogeneous DataFrames"
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'y':self.ys}), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    @pd_skip
    def test_dataset_dataframe_init_ht_alias(self):
        "Tests support for heterogeneous DataFrames"
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'y':self.ys}),
                          kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    # Test literal formats

    def test_dataset_expanded_dimvals_ht(self):
        self.assertEqual(self.table.dimension_values('Gender', expanded=False),
                         np.array(['M', 'F']))

    def test_dataset_implicit_indexing_init(self):
        dataset = Scatter(self.ys, kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_tuple_init(self):
        dataset = Dataset((self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_tuple_init_alias(self):
        dataset = Dataset((self.xs, self.ys), kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_simple_zip_init(self):
        dataset = Dataset(zip(self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_simple_zip_init_alias(self):
        dataset = Dataset(zip(self.xs, self.ys), kdims=[('x', 'X')], vdims=[('y', 'Y')])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_zip_init(self):
        dataset = Dataset(zip(self.gender, self.age,
                              self.weight, self.height),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_zip_init_alias(self):
        dataset = self.alias_table.clone(zip(self.gender, self.age,
                                             self.weight, self.height))
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_odict_init(self):
        dataset = Dataset(OrderedDict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_odict_init_alias(self):
        dataset = Dataset(OrderedDict(zip(self.xs, self.ys)),
                          kdims=[('a', 'A')], vdims=[('b', 'B')])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_dict_init(self):
        dataset = Dataset(dict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(dataset.data, self.data_type))

    def test_dataset_range_with_dimension_range(self):
        dt64 = np.array([np.datetime64(datetime.datetime(2017, 1, i)) for i in range(1, 4)])
        ds = Dataset(dt64, [Dimension('Date', range=(dt64[0], dt64[-1]))])
        self.assertEqual(ds.range('Date'), (dt64[0], dt64[-1]))
        
    # Operations

    @pd_skip
    def test_dataset_redim_with_alias_dframe(self):
        test_df = pd.DataFrame({'x': range(10), 'y': range(0,20,2)})
        dataset = Dataset(test_df, kdims=[('x', 'X-label')], vdims=['y'])
        redim_df = pd.DataFrame({'X': range(10), 'y': range(0,20,2)})
        dataset_redim = Dataset(redim_df, kdims=['X'], vdims=['y'])
        self.assertEqual(dataset.redim(**{'X-label':'X'}), dataset_redim)
        self.assertEqual(dataset.redim(**{'x':'X'}), dataset_redim)

    def test_dataset_mixed_type_range(self):
        ds = Dataset((['A', 'B', 'C', None],), 'A')
        self.assertEqual(ds.range(0), ('A', 'C'))

    def test_dataset_sort_vdim_ht(self):
        dataset = Dataset({'x':self.xs, 'y':-self.ys},
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset({'x': self.xs[::-1], 'y':-self.ys[::-1]},
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y'), dataset_sorted)

    def test_dataset_sort_string_ht(self):
        dataset_sorted = Dataset({'Gender':['F', 'M', 'M'], 'Age':[12, 10, 16],
                                  'Weight':[10,15,18], 'Height':[0.8,0.8,0.6]},
                                 kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(self.table.sort(), dataset_sorted)

    def test_dataset_sample_ht(self):
        samples = self.dataset_ht.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_dataset_reduce_ht(self):
        reduced = Dataset({'Age':self.age, 'Weight':self.weight, 'Height':self.height},
                          kdims=self.kdims[1:], vdims=self.vdims)
        self.assertEqual(self.table.reduce(['Gender'], np.mean), reduced)

    def test_dataset_1D_reduce_ht(self):
        self.assertEqual(self.dataset_ht.reduce('x', np.mean), np.float64(0.5))

    def test_dataset_2D_reduce_ht(self):
        reduced = Dataset({'Weight':[14.333333333333334], 'Height':[0.73333333333333339]},
                          kdims=[], vdims=self.vdims)
        self.assertEqual(self.table.reduce(function=np.mean), reduced)

    def test_dataset_2D_partial_reduce_ht(self):
        dataset = Dataset({'x':self.xs, 'y':self.ys, 'z':self.zs},
                          kdims=['x', 'y'], vdims=['z'])
        reduced = Dataset({'x':self.xs, 'z':self.zs},
                          kdims=['x'], vdims=['z'])
        self.assertEqual(dataset.reduce(['y'], np.mean), reduced)

    def test_dataset_2D_aggregate_spread_fn_with_duplicates(self):
        dataset = Dataset({'x': np.array([0, 0, 1, 1]), 'y': np.array([0, 1, 2, 3]),
                           'z': np.array([1, 2, 3, 4])},
                          kdims=['x', 'y'], vdims=['z'])
        agg = dataset.aggregate('x', function=np.mean, spreadfn=np.var)
        self.assertEqual(agg, Dataset({'x': np.array([0, 1]), 'z': np.array([1.5, 3.5]),
                                       'z_var': np.array([0.25, 0.25])},
                                      kdims=['x'], vdims=['z', 'z_var']))

    def test_dataset_aggregate_ht(self):
        aggregated = Dataset({'Gender':['M', 'F'], 'Weight':[16.5, 10], 'Height':[0.7, 0.8]},
                             kdims=self.kdims[:1], vdims=self.vdims)
        self.compare_dataset(self.table.aggregate(['Gender'], np.mean), aggregated)

    def test_dataset_aggregate_string_types(self):
        ds = Dataset({'Gender':['M', 'M'], 'Weight':[20, 10], 'Name':['Peter', 'Matt']},
                             kdims='Gender', vdims=['Weight', 'Name'])
        aggregated = Dataset({'Gender': ['M'], 'Weight': [15]},
                             kdims='Gender', vdims=['Weight'])
        self.compare_dataset(ds.aggregate(['Gender'], np.mean), aggregated)

    def test_dataset_aggregate_string_types_size(self):
        ds = Dataset({'Gender':['M', 'M'], 'Weight':[20, 10], 'Name':['Peter', 'Matt']},
                             kdims='Gender', vdims=['Weight', 'Name'])
        aggregated = Dataset({'Gender': ['M'], 'Weight': [2], 'Name': [2]},
                             kdims='Gender', vdims=['Weight', 'Name'])
        self.compare_dataset(ds.aggregate(['Gender'], np.size), aggregated)

    def test_dataset_aggregate_ht_alias(self):
        aggregated = Dataset({'gender':['M', 'F'], 'weight':[16.5, 10], 'height':[0.7, 0.8]},
                             kdims=self.alias_kdims[:1], vdims=self.alias_vdims)
        self.compare_dataset(self.alias_table.aggregate('Gender', np.mean), aggregated)

    def test_dataset_2D_aggregate_partial_ht(self):
        dataset = Dataset({'x':self.xs, 'y':self.ys, 'z':self.zs},
                          kdims=['x', 'y'], vdims=['z'])
        reduced = Dataset({'x':self.xs, 'z':self.zs},
                          kdims=['x'], vdims=['z'])
        self.assertEqual(dataset.aggregate(['x'], np.mean), reduced)

    def test_dataset_empty_aggregate(self):
        dataset = Dataset([], kdims=self.kdims, vdims=self.vdims)
        aggregated = Dataset([], kdims=self.kdims[:1], vdims=self.vdims)
        self.compare_dataset(dataset.aggregate(['Gender'], np.mean), aggregated)

    def test_dataset_empty_aggregate_with_spreadfn(self):
        dataset = Dataset([], kdims=self.kdims, vdims=self.vdims)
        aggregated = Dataset([], kdims=self.kdims[:1], vdims=[d for vd in self.vdims for d in [vd, vd+'_std']])
        self.compare_dataset(dataset.aggregate(['Gender'], np.mean, np.std), aggregated)

    def test_dataset_groupby(self):
        group1 = {'Age':[10,16], 'Weight':[15,18], 'Height':[0.8,0.6]}
        group2 = {'Age':[12], 'Weight':[10], 'Height':[0.8]}
        grouped = HoloMap([('M', Dataset(group1, kdims=['Age'], vdims=self.vdims)),
                           ('F', Dataset(group2, kdims=['Age'], vdims=self.vdims))],
                          kdims=['Gender'], sort=False)
        print(grouped.keys())
        self.assertEqual(self.table.groupby(['Gender']), grouped)

    def test_dataset_groupby_alias(self):
        group1 = {'age':[10,16], 'weight':[15,18], 'height':[0.8,0.6]}
        group2 = {'age':[12], 'weight':[10], 'height':[0.8]}
        grouped = HoloMap([('M', Dataset(group1, kdims=[('age', 'Age')],
                                         vdims=self.alias_vdims)),
                           ('F', Dataset(group2, kdims=[('age', 'Age')],
                                         vdims=self.alias_vdims))],
                          kdims=[('gender', 'Gender')], sort=False)
        self.assertEqual(self.alias_table.groupby('Gender'), grouped)

    def test_dataset_groupby_second_dim(self):
        group1 = {'Gender':['M'], 'Weight':[15], 'Height':[0.8]}
        group2 = {'Gender':['M'], 'Weight':[18], 'Height':[0.6]}
        group3 = {'Gender':['F'], 'Weight':[10], 'Height':[0.8]}
        grouped = HoloMap([(10, Dataset(group1, kdims=['Gender'], vdims=self.vdims)),
                           (16, Dataset(group2, kdims=['Gender'], vdims=self.vdims)),
                           (12, Dataset(group3, kdims=['Gender'], vdims=self.vdims))],
                          kdims=['Age'], sort=False)
        self.assertEqual(self.table.groupby(['Age']), grouped)

    def test_dataset_groupby_dynamic(self):
        grouped_dataset = self.table.groupby('Gender', dynamic=True)
        self.assertEqual(grouped_dataset['M'],
                         self.table.select(Gender='M').reindex(['Age']))
        self.assertEqual(grouped_dataset['F'],
                         self.table.select(Gender='F').reindex(['Age']))

    def test_dataset_groupby_dynamic_alias(self):
        grouped_dataset = self.alias_table.groupby('Gender', dynamic=True)
        self.assertEqual(grouped_dataset['M'],
                         self.alias_table.select(gender='M').reindex(['Age']))
        self.assertEqual(grouped_dataset['F'],
                         self.alias_table.select(gender='F').reindex(['Age']))

    def test_dataset_add_dimensions_value_ht(self):
        table = self.dataset_ht.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(table.shape[0]))

    def test_dataset_add_dimensions_value_ht_alias(self):
        table = self.dataset_ht.add_dimension(('z', 'Z'), 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(table.shape[0]))

    def test_dataset_add_dimensions_values_ht(self):
        table = self.dataset_ht.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    def test_redim_with_extra_dimension(self):
        dataset = self.dataset_ht.add_dimension('Temp', 0, 0).clone(kdims=['x', 'y'], vdims=[])
        redimmed = dataset.redim(x='Time')
        self.assertEqual(redimmed.dimension_values('Time'),
                         self.dataset_ht.dimension_values('x'))

    # Indexing

    def test_dataset_index_row_gender_female(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        row = self.table['F',:]
        self.assertEquals(row, indexed)

    def test_dataset_index_rows_gender_male(self):
        row = self.table['M',:]
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_select_rows_gender_male(self):
        row = self.table.select(Gender='M')
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_select_rows_gender_male_alias(self):
        row = self.alias_table.select(Gender='M')
        alias_row = self.alias_table.select(gender='M')
        indexed = Dataset({'gender':['M', 'M'], 'age':[10, 16],
                           'weight':[15,18], 'height':[0.8,0.6]},
                          kdims=self.alias_kdims, vdims=self.alias_vdims)
        self.assertEquals(row, indexed)
        self.assertEquals(alias_row, indexed)

    def test_dataset_index_row_age(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(self.table[:, 12], indexed)

    def test_dataset_index_item_table(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(self.table['F', 12], indexed)

    def test_dataset_index_value1(self):
        self.assertEquals(self.table['F', 12, 'Weight'], 10)

    def test_dataset_index_value2(self):
        self.assertEquals(self.table['F', 12, 'Height'], 0.8)

    def test_dataset_index_column_ht(self):
        self.compare_arrays(self.dataset_ht['y'], self.ys)

    def test_dataset_boolean_index(self):
        row = self.table[np.array([True, True, False])]
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_value_dim_index(self):
        row = self.table[:, :, 'Weight']
        indexed = Dataset({'Gender':['M', 'M', 'F'], 'Age':[10, 16, 12],
                           'Weight':[15,18, 10]},
                          kdims=self.kdims, vdims=self.vdims[:1])
        self.assertEquals(row, indexed)

    def test_dataset_value_dim_scalar_index(self):
        row = self.table['M', 10, 'Weight']
        self.assertEquals(row, 15)

    # Tabular indexing

    def test_dataset_iloc_slice_rows(self):
        sliced = self.table.iloc[1:2]
        table = Dataset({'Gender':self.gender[1:2], 'Age':self.age[1:2],
                         'Weight':self.weight[1:2], 'Height':self.height[1:2]},
                        kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(sliced, table)

    def test_dataset_iloc_slice_rows_slice_cols(self):
        sliced = self.table.iloc[1:2, 1:3]
        table = Dataset({'Age':self.age[1:2], 'Weight':self.weight[1:2]},
                        kdims=self.kdims[1:], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_slice_rows_list_cols(self):
        sliced = self.table.iloc[1:2, [1, 3]]
        table = Dataset({'Age':self.age[1:2], 'Height':self.height[1:2]},
                        kdims=self.kdims[1:], vdims=self.vdims[1:])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_slice_rows_index_cols(self):
        sliced = self.table.iloc[1:2, 2]
        table = Dataset({'Weight':self.weight[1:2]}, kdims=[], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows(self):
        sliced = self.table.iloc[[0, 2]]
        table = Dataset({'Gender':self.gender[[0, 2]], 'Age':self.age[[0, 2]],
                         'Weight':self.weight[[0, 2]], 'Height':self.height[[0, 2]]},
                        kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows_list_cols(self):
        sliced = self.table.iloc[[0, 2], [0, 2]]
        table = Dataset({'Gender':self.gender[[0, 2]],  'Weight':self.weight[[0, 2]]},
                        kdims=self.kdims[:1], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows_list_cols_by_name(self):
        sliced = self.table.iloc[[0, 2], ['Gender', 'Weight']]
        table = Dataset({'Gender':self.gender[[0, 2]],  'Weight':self.weight[[0, 2]]},
                        kdims=self.kdims[:1], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_rows_slice_cols(self):
        sliced = self.table.iloc[[0, 2], slice(1, 3)]
        table = Dataset({'Age':self.age[[0, 2]],  'Weight':self.weight[[0, 2]]},
                        kdims=self.kdims[1:], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_index_rows_index_cols(self):
        indexed = self.table.iloc[1, 1]
        self.assertEqual(indexed, self.age[1])

    def test_dataset_iloc_index_rows_slice_cols(self):
        indexed = self.table.iloc[1, 1:3]
        table = Dataset({'Age':self.age[[1]],  'Weight':self.weight[[1]]},
                        kdims=self.kdims[1:], vdims=self.vdims[:1])
        self.assertEqual(indexed, table)

    def test_dataset_iloc_list_cols(self):
        sliced = self.table.iloc[:, [0, 2]]
        table = Dataset({'Gender':self.gender,  'Weight':self.weight},
                        kdims=self.kdims[:1], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_list_cols_by_name(self):
        sliced = self.table.iloc[:, ['Gender', 'Weight']]
        table = Dataset({'Gender':self.gender,  'Weight':self.weight},
                        kdims=self.kdims[:1], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_ellipsis_list_cols(self):
        sliced = self.table.iloc[..., [0, 2]]
        table = Dataset({'Gender':self.gender,  'Weight':self.weight},
                        kdims=self.kdims[:1], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    def test_dataset_iloc_ellipsis_list_cols_by_name(self):
        sliced = self.table.iloc[..., ['Gender', 'Weight']]
        table = Dataset({'Gender':self.gender,  'Weight':self.weight},
                        kdims=self.kdims[:1], vdims=self.vdims[:1])
        self.assertEqual(sliced, table)

    # Casting

    def test_dataset_array_ht(self):
        self.assertEqual(self.dataset_ht.array(),
                         np.column_stack([self.xs, self.ys]))
Пример #6
0
class HomogeneousColumnTypes(object):
    """
    Tests for data formats that require all dataset to have the same
    type (e.g numpy arrays)
    """

    def setUp(self):
        self.restore_datatype = Dataset.datatype
        self.data_instance_type = None

    def init_data(self):
        self.xs = range(11)
        self.xs_2 = [el**2 for el in self.xs]

        self.y_ints = [i*2 for i in range(11)]
        self.dataset_hm = Dataset((self.xs, self.y_ints),
                                  kdims=['x'], vdims=['y'])

    def tearDown(self):
        Dataset.datatype = self.restore_datatype

    # Test the array constructor (homogenous data) to be supported by
    # all interfaces.

    def test_dataset_array_init_hm(self):
        "Tests support for arrays (homogeneous)"
        dataset = Dataset(np.column_stack([self.xs, self.xs_2]),
                          kdims=['x'], vdims=['x2'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_ndelement_init_hm(self):
        "Tests support for homogeneous NdElement (backwards compatibility)"
        dataset = Dataset(NdElement(zip(self.xs, self.xs_2),
                                    kdims=['x'], vdims=['x2']))
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dataframe_init_hm(self):
        "Tests support for homogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
                          kdims=['x'], vdims=[ 'x2'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    # Properties and information

    def test_dataset_shape(self):
        self.assertEqual(self.dataset_hm.shape, (11, 2))

    def test_dataset_range(self):
        self.assertEqual(self.dataset_hm.range('y'), (0, 20))

    def test_dataset_closest(self):
        closest = self.dataset_hm.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    # Operations

    def test_dataset_sort_vdim_hm(self):
        xs_2 = np.array(self.xs_2)
        dataset = Dataset(np.column_stack([self.xs, -xs_2]),
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y'), dataset_sorted)

    def test_dataset_sample_hm(self):
        samples = self.dataset_hm.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))

    def test_dataset_array_hm(self):
        self.assertEqual(self.dataset_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))

    def test_dataset_add_dimensions_value_hm(self):
        table = self.dataset_hm.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(len(table)))

    def test_dataset_add_dimensions_values_hm(self):
        table =  self.dataset_hm.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    def test_dataset_slice_hm(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.dataset_hm[5:9], dataset_slice)

    def test_dataset_slice_fn_hm(self):
        dataset_slice = Dataset({'x':range(5, 9), 'y':[2 * i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.dataset_hm[lambda x: (x >= 5) & (x < 9)], dataset_slice)

    def test_dataset_1D_reduce_hm(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints}, kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.reduce('x', np.mean), 10)

    def test_dataset_2D_reduce_hm(self):
        dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z':[el ** 2 for el in self.y_ints]},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(np.array(dataset.reduce(['x', 'y'], np.mean)),
                         np.array(140))

    def test_dataset_2D_aggregate_partial_hm(self):
        z_ints = [el**2 for el in self.y_ints]
        dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z':z_ints},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(dataset.aggregate(['x'], np.mean),
                         Dataset({'x':self.xs, 'z':z_ints}, kdims=['x'], vdims=['z']))

    # Indexing

    def test_dataset_index_column_idx_hm(self):
        self.assertEqual(self.dataset_hm[5], self.y_ints[5])

    def test_dataset_index_column_ht(self):
        self.compare_arrays(self.dataset_hm['y'], self.y_ints)

    def test_dataset_array_ht(self):
        self.assertEqual(self.dataset_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))
Пример #7
0
class HeterogeneousColumnTypes(HomogeneousColumnTypes):
    """
    Tests for data formats that all dataset to have varied types
    """

    def init_data(self):
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.gender, self.age = ['M','M','F'], [10,16,12]
        self.weight, self.height = [15,18,10], [0.8,0.6,0.8]
        self.table = Dataset({'Gender':self.gender, 'Age':self.age,
                              'Weight':self.weight, 'Height':self.height},
                             kdims=self.kdims, vdims=self.vdims)

        super(HeterogeneousColumnTypes, self).init_data()
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.dataset_ht = Dataset({'x':self.xs, 'y':self.ys},
                                  kdims=['x'], vdims=['y'])

    # Test the constructor to be supported by all interfaces supporting
    # heterogeneous column types.

    def test_dataset_ndelement_init_ht(self):
        "Tests support for heterogeneous NdElement (backwards compatibility)"
        dataset = Dataset(NdElement(zip(self.xs, self.ys), kdims=['x'], vdims=['y']))
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dataframe_init_ht(self):
        "Tests support for heterogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        dataset = Dataset(pd.DataFrame({'x':self.xs, 'y':self.ys}), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    # Test literal formats

    def test_dataset_expanded_dimvals_ht(self):
        self.assertEqual(self.table.dimension_values('Gender', expanded=False),
                         np.array(['M', 'F']))

    def test_dataset_implicit_indexing_init(self):
        dataset = Dataset(self.ys, kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_tuple_init(self):
        dataset = Dataset((self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_simple_zip_init(self):
        dataset = Dataset(zip(self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_zip_init(self):
        dataset = Dataset(zip(self.gender, self.age,
                              self.weight, self.height),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_odict_init(self):
        dataset = Dataset(OrderedDict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    def test_dataset_dict_init(self):
        dataset = Dataset(dict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(dataset.data, self.data_instance_type))

    # Operations

    def test_dataset_sort_vdim_ht(self):
        dataset = Dataset({'x':self.xs, 'y':-self.ys},
                          kdims=['x'], vdims=['y'])
        dataset_sorted = Dataset({'x': self.xs[::-1], 'y':-self.ys[::-1]},
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(dataset.sort('y'), dataset_sorted)

    def test_dataset_sort_string_ht(self):
        dataset_sorted = Dataset({'Gender':['F', 'M', 'M'], 'Age':[12, 10, 16],
                                  'Weight':[10,15,18], 'Height':[0.8,0.8,0.6]},
                                 kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(self.table.sort(), dataset_sorted)

    def test_dataset_sample_ht(self):
        samples = self.dataset_ht.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_dataset_reduce_ht(self):
        reduced = Dataset({'Age':self.age, 'Weight':self.weight, 'Height':self.height},
                          kdims=self.kdims[1:], vdims=self.vdims)
        self.assertEqual(self.table.reduce(['Gender'], np.mean), reduced)

    def test_dataset_1D_reduce_ht(self):
        self.assertEqual(self.dataset_ht.reduce('x', np.mean), np.float64(0.5))

    def test_dataset_2D_reduce_ht(self):
        reduced = Dataset({'Weight':[14.333333333333334], 'Height':[0.73333333333333339]},
                          kdims=[], vdims=self.vdims)
        self.assertEqual(self.table.reduce(function=np.mean), reduced)

    def test_dataset_2D_partial_reduce_ht(self):
        dataset = Dataset({'x':self.xs, 'y':self.ys, 'z':self.zs},
                          kdims=['x', 'y'], vdims=['z'])
        reduced = Dataset({'x':self.xs, 'z':self.zs},
                          kdims=['x'], vdims=['z'])
        self.assertEqual(dataset.reduce(['y'], np.mean), reduced)

    def test_column_aggregate_ht(self):
        aggregated = Dataset({'Gender':['M', 'F'], 'Weight':[16.5, 10], 'Height':[0.7, 0.8]},
                             kdims=self.kdims[:1], vdims=self.vdims)
        self.compare_dataset(self.table.aggregate(['Gender'], np.mean), aggregated)

    def test_dataset_2D_aggregate_partial_ht(self):
        dataset = Dataset({'x':self.xs, 'y':self.ys, 'z':self.zs},
                          kdims=['x', 'y'], vdims=['z'])
        reduced = Dataset({'x':self.xs, 'z':self.zs},
                          kdims=['x'], vdims=['z'])
        self.assertEqual(dataset.aggregate(['x'], np.mean), reduced)


    def test_dataset_groupby(self):
        group1 = {'Age':[10,16], 'Weight':[15,18], 'Height':[0.8,0.6]}
        group2 = {'Age':[12], 'Weight':[10], 'Height':[0.8]}
        grouped = HoloMap([('M', Dataset(group1, kdims=['Age'], vdims=self.vdims)),
                           ('F', Dataset(group2, kdims=['Age'], vdims=self.vdims))],
                          kdims=['Gender'])
        self.assertEqual(self.table.groupby(['Gender']), grouped)


    def test_dataset_add_dimensions_value_ht(self):
        table = self.dataset_ht.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(len(table)))

    def test_dataset_add_dimensions_values_ht(self):
        table = self.dataset_ht.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    # Indexing

    def test_dataset_index_row_gender_female(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        row = self.table['F',:]
        self.assertEquals(row, indexed)

    def test_dataset_index_rows_gender_male(self):
        row = self.table['M',:]
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_index_row_age(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(self.table[:, 12], indexed)

    def test_dataset_index_item_table(self):
        indexed = Dataset({'Gender':['F'], 'Age':[12],
                           'Weight':[10], 'Height':[0.8]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(self.table['F', 12], indexed)

    def test_dataset_index_value1(self):
        self.assertEquals(self.table['F', 12, 'Weight'], 10)

    def test_dataset_index_value2(self):
        self.assertEquals(self.table['F', 12, 'Height'], 0.8)

    def test_dataset_index_column_ht(self):
        self.compare_arrays(self.dataset_ht['y'], self.ys)

    def test_dataset_boolean_index(self):
        row = self.table[np.array([True, True, False])]
        indexed = Dataset({'Gender':['M', 'M'], 'Age':[10, 16],
                           'Weight':[15,18], 'Height':[0.8,0.6]},
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_dataset_value_dim_index(self):
        row = self.table[:, :, 'Weight']
        indexed = Dataset({'Gender':['M', 'M', 'F'], 'Age':[10, 16, 12],
                           'Weight':[15,18, 10]},
                          kdims=self.kdims, vdims=self.vdims[:1])
        self.assertEquals(row, indexed)

    def test_dataset_value_dim_scalar_index(self):
        row = self.table['M', 10, 'Weight']
        self.assertEquals(row, 15)

    # Casting

    def test_dataset_array_ht(self):
        self.assertEqual(self.dataset_ht.array(),
                         np.column_stack([self.xs, self.ys]))