Пример #1
0
 def part_a( self ):
     '''
     a) ideal trajectory: no drag (C=0) and no spin (-> Magnus force = 0) [2 points]
     '''
     initial_velocity = self.initial_velocity
     dimpled = False
     spin = 0
     def C( v, dimpled ):
         return 0
     
     
     for initial_angle in self.initial_angles_degrees:
         part_a_ball = Golf( initial_velocity, initial_angle, C, dimpled, spin )
         part_a_ball.display_plot()
         for filetype in self.filetypes:
             part_a_ball.save_plot( filetype )        
Пример #2
0
    file_directory = "/home/res/Documents/duke/2012S/PHY260/homeworks/homework3/"
#    TODO: edit the following line, implement differently when processing data for different parts of the assignment.
    file_name_base = "PHY260_Grisaitis_homework3_"
    file_type_extensions = ['png']
    
    initial_angles_degrees = ( 9, 15, 30, 45 )
    initial_speed = 70
    dt = 0.01
    
    # This array contains the parameters specific to each part of the problem.
    question_parameters = [ \
        ['A', 0.0, False, False, 'Ideal'], \
        ['B', 0.5, False, False, 'With air resistance'], \
        ['C', 0.5, True, False, 'With air resistance and dimples'], \
        ['D', 0.5, True, True, 'With air resistance, dimples, and spin']]
    
    for ( part, C, dimpled, spin, info ) in question_parameters:
        # initialize a model object for each part of the problem
        golf_ball = Golf( initial_angles_degrees, initial_speed, C, dimpled, spin )
        golf_ball.solve_with_Euler( dt )
        file_name_base = "PHY260_Grisaitis_homework3_" + part
        # plot the model and save results to file
        golf_ball.plot_and_save_models( \
            file_directory = file_directory, \
            file_name_base = file_name_base, \
            file_types = file_type_extensions, \
            info_text = ( ( 'Part %s:' % part ) + info ) \
            )