Пример #1
0
def test_basic_trainer():
    model = nn.Linear(10, 10)
    optimizer = optim.SGD()
    scheduler = lr_scheduler.StepLR(9)
    trainer = trainers.SupervisedTrainer(model,
                                         optimizer,
                                         F.cross_entropy,
                                         scheduler=scheduler,
                                         update_scheduler_by_epoch=False)
    loader = [(torch.randn(2, 10), torch.zeros(2, dtype=torch.long))
              for _ in range(10)]
    for _ in trainer.epoch_range(1):
        trainer.train(loader)
    assert pytest.approx(trainer.optimizer.param_groups[0]["lr"], 0.01)

    optimizer = torch.optim.SGD(model.parameters(), lr=1e-1)
    trainer = trainers.SupervisedTrainer(model,
                                         optimizer,
                                         F.cross_entropy,
                                         scheduler=scheduler,
                                         update_scheduler_by_epoch=False)
    for _ in trainer.epoch_range(1):
        trainer.train(loader)

    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 9)
    trainer = trainers.SupervisedTrainer(model,
                                         optimizer,
                                         F.cross_entropy,
                                         scheduler=scheduler,
                                         update_scheduler_by_epoch=False)
    trainer.run(loader, loader, 15, 11)
    assert trainer.step == 11 - 1
Пример #2
0
def main():
    model = {
        "resnet20": resnet20,
        "wrn28_10": wrn28_10
    }[args.model](num_classes=10)
    weight_decay = {"resnet20": 1e-4, "wrn28_10": 5e-4}[args.model]
    lr_decay = {"resnet20": 0.1, "wrn28_10": 0.2}[args.model]
    train_loader, test_loader = cifar10_loaders(args.batch_size)
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([100, 150], gamma=lr_decay)
    tq = reporters.TQDMReporter(range(args.epochs), verb=True)
    c = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.IOReporter("."),
        reporters.TensorboardReporter("."),
        callbacks.WeightSave("."), tq
    ]

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=c,
                                    scheduler=scheduler) as trainer:
        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
Пример #3
0
def train_and_eval(cfg):
    train_loader, val_loader, test_loader, num_classes = get_dataloader(
        cfg.data.name, cfg.data.val_size, cfg.data.batch_size,
        cfg.data.download, cfg.augment, False)
    model = get_model(cfg.model.name, num_classes)
    optimizer = optim.SGD(cfg.optim.model.lr,
                          momentum=0.9,
                          weight_decay=cfg.optim.model.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(cfg.optim.model.steps)
    tq = reporters.TQDMReporter(range(cfg.optim.epochs), verb=cfg.verb)
    callback = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.TensorboardReporter("."),
        reporters.IOReporter("."), tq
    ]

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=callback,
                                    scheduler=scheduler) as trainer:
        for ep in tq:
            trainer.train(train_loader)
            trainer.test(val_loader, 'val')
            trainer.test(test_loader)
Пример #4
0
def main(cfg):
    if cfg.use_accimage:
        enable_accimage()
    model = MODEL_REGISTRY(cfg.model.name)(num_classes=10)
    train_loader, test_loader = DATASET_REGISTRY("fast_cifar10" if cfg.use_fast_collate else "cifar10"
                                                 )(cfg.data.batch_size, num_workers=4,
                                                   use_prefetcher=cfg.use_prefetcher)
    optimizer = None if cfg.bn_no_wd else optim.SGD(lr=1e-1, momentum=0.9, weight_decay=cfg.optim.weight_decay)
    scheduler = lr_scheduler.MultiStepLR([100, 150], gamma=cfg.optim.lr_decay)

    if cfg.bn_no_wd:
        def set_optimizer(trainer):
            bn_params = []
            non_bn_parameters = []
            for name, p in trainer.model.named_parameters():
                if "bn" in name:
                    bn_params.append(p)
                else:
                    non_bn_parameters.append(p)
            optim_params = [
                {"params": bn_params, "weight_decay": 0},
                {"params": non_bn_parameters, "weight_decay": cfg.optim.weight_decay},
            ]
            trainer.optimizer = torch.optim.SGD(optim_params, lr=1e-1, momentum=0.9)

        trainers.SupervisedTrainer.set_optimizer = set_optimizer

    if cfg.use_zerograd_none:
        import types

        def set_optimizer(trainer):
            # see Apex for details
            def zero_grad(self):
                for group in self.param_groups:
                    for p in group['params']:
                        p.grad = None

            trainer.optimizer = trainer.optimizer(trainer.model.parameters())
            trainer.optimizer.zero_grad = types.MethodType(zero_grad, trainer.optimizer)

        trainers.SupervisedTrainer.set_optimizer = set_optimizer

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    reporters=[reporters.TensorboardReporter('.')],
                                    scheduler=scheduler,
                                    use_amp=cfg.use_amp,
                                    debug=cfg.debug
                                    ) as trainer:

        for _ in trainer.epoch_range(cfg.optim.epochs):
            trainer.train(train_loader)
            trainer.test(test_loader)

        print(f"Max Test Accuracy={max(trainer.reporter.history('accuracy/test')):.3f}")
Пример #5
0
def main(cfg):
    model = {
        "resnet20": resnet20,
        "wrn28_10": wrn28_10
    }[cfg.model](num_classes=10)
    weight_decay = {"resnet20": 1e-4, "wrn28_10": 5e-4}[cfg.model]
    lr_decay = {"resnet20": 0.1, "wrn28_10": 0.2}[cfg.model]
    train_loader, test_loader = vision_loaders("cifar10", cfg.batch_size)
    optimizer = None if cfg.bn_no_wd else optim.SGD(
        lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([100, 150], gamma=lr_decay)
    tq = reporters.TQDMReporter(range(cfg.epochs), verb=True)
    c = [
        callbacks.AccuracyCallback(),
        callbacks.LossCallback(),
        reporters.IOReporter("."),
        reporters.TensorboardReporter("."),
        callbacks.WeightSave("."), tq
    ]

    if cfg.bn_no_wd:

        def set_optimizer(trainer):
            bn_params = []
            non_bn_parameters = []
            for name, p in trainer.model.named_parameters():
                if "bn" in name:
                    bn_params.append(p)
                else:
                    non_bn_parameters.append(p)
            optim_params = [
                {
                    "params": bn_params,
                    "weight_decay": 0
                },
                {
                    "params": non_bn_parameters,
                    "weight_decay": weight_decay
                },
            ]
            trainer.optimizer = torch.optim.SGD(optim_params,
                                                lr=1e-1,
                                                momentum=0.9)

        trainers.SupervisedTrainer.set_optimizer = set_optimizer

    with trainers.SupervisedTrainer(model,
                                    optimizer,
                                    F.cross_entropy,
                                    callbacks=c,
                                    scheduler=scheduler) as trainer:

        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
Пример #6
0
def main(cfg):
    if cfg.use_accimage:
        enable_accimage()
    model = MODEL_REGISTRY(cfg.name)(num_classes=10)
    train_loader, test_loader = DATASET_REGISTRY(
        "fast_cifar10" if cfg.use_fast_collate else "cifar10")(
            cfg.batch_size, num_workers=4, use_prefetcher=cfg.use_prefetcher)
    optimizer = None if cfg.bn_no_wd else optim.SGD(
        lr=cfg.lr, momentum=0.9, weight_decay=cfg.weight_decay)
    scheduler = lr_scheduler.CosineAnnealingWithWarmup(cfg.epochs, 4, 5)

    if cfg.bn_no_wd:

        def set_optimizer(trainer):
            bn_params = []
            non_bn_parameters = []
            for name, p in trainer.model.named_parameters():
                if "bn" in name:
                    bn_params.append(p)
                else:
                    non_bn_parameters.append(p)
            optim_params = [
                {
                    "params": bn_params,
                    "weight_decay": 0
                },
                {
                    "params": non_bn_parameters,
                    "weight_decay": cfg.weight_decay
                },
            ]
            trainer.optimizer = torch.optim.SGD(optim_params,
                                                lr=1e-1,
                                                momentum=0.9)

        trainers.SupervisedTrainer.set_optimizer = set_optimizer

    with trainers.SupervisedTrainer(
            model,
            optimizer,
            F.cross_entropy,
            reporters=[reporters.TensorboardReporter('.')],
            scheduler=scheduler,
            use_amp=cfg.use_amp,
            debug=cfg.debug) as trainer:

        for _ in trainer.epoch_range(cfg.epochs):
            trainer.train(train_loader)
            trainer.test(test_loader)
            trainer.scheduler.step()

        print(
            f"Max Test Accuracy={max(trainer.reporter.history('accuracy/test')):.3f}"
        )
Пример #7
0
def test(tmp_path, rep, save_freq):
    temp_dir = tmp_path / "test"

    @callbacks.metric_callback_decorator
    def ca(data):
        output, target = data["output"], data["data"][1]
        return {
            i: v
            for i, v in enumerate(metrics.classwise_accuracy(output, target))
        }

    model = nn.Linear(10, 10)
    optimizer = optim.SGD(lr=0.1)

    c = callbacks.CallbackList(
        callbacks.AccuracyCallback(), ca,
        callbacks.WeightSave(save_path=temp_dir, save_freq=save_freq))
    epoch = range(1)
    loader = [(torch.randn(2, 10), torch.zeros(2, dtype=torch.long))
              for _ in range(10)]
    with {
            "tqdm": lambda: reporters.TQDMReporter(epoch, c, temp_dir),
            "logger": lambda: reporters.LoggerReporter(c, temp_dir),
            "tensorboard": lambda: reporters.TensorboardReporter(c, temp_dir)
    }[rep]() as _rep:
        tr = trainers.SupervisedTrainer(model,
                                        optimizer,
                                        F.cross_entropy,
                                        callbacks=_rep,
                                        verb=False)
        if rep == "tqdm":
            epoch = _rep
        for _ in epoch:
            tr.train(loader)
            tr.test(loader)
        tr.exit()

    try:
        # .../test/**/0.pkl
        save_file = list(Path(temp_dir).glob("*/*.pkl"))[0]
    except IndexError as e:
        print(list(Path(temp_dir).glob("*/*")))
        raise e
    tr.resume(save_file)

    c = callbacks.AccuracyCallback()
    with {
            "tqdm": lambda: reporters.TQDMReporter(epoch, c, temp_dir),
            "logger": lambda: reporters.LoggerReporter(c, temp_dir),
            "tensorboard": lambda: reporters.TensorboardReporter(c, temp_dir)
    }[rep]() as _rep:
        inferencer = Inferencer(model, _rep)
        inferencer.load(save_file)
        inferencer.run(loader)
def test(rep):
    tmpdir = str(gettempdir())
    if rep == "tensorboard" and not is_tensorboardX_available:
        pytest.skip("tensorboardX is not available")

    @callbacks.metric_callback_decorator
    def ca(data):
        output, target = data["output"], data["data"][1]
        return {
            i: v
            for i, v in enumerate(metrics.classwise_accuracy(output, target))
        }

    model = nn.Linear(10, 10)
    optimizer = optim.SGD(lr=0.1)

    c = callbacks.CallbackList(callbacks.AccuracyCallback(), ca,
                               callbacks.WeightSave(tmpdir))
    epoch = range(1)
    loader = [(torch.randn(2, 10), torch.zeros(2, dtype=torch.long))
              for _ in range(10)]
    with {
            "tqdm": lambda: reporters.TQDMReporter(epoch, c, tmpdir),
            "logger": lambda: reporters.LoggerReporter(c, tmpdir),
            "tensorboard": lambda: reporters.TensorboardReporter(c, tmpdir)
    }[rep]() as _rep:
        tr = trainers.SupervisedTrainer(model,
                                        optimizer,
                                        F.cross_entropy,
                                        callbacks=_rep,
                                        verb=False)
        if rep == "tqdm":
            epoch = _rep
        for _ in epoch:
            tr.train(loader)
            tr.test(loader)

    save_file = list(Path(tmpdir).glob("*/*.pkl"))[0]
    tr.resume(save_file)

    c = callbacks.AccuracyCallback()
    with {
            "tqdm": lambda: reporters.TQDMReporter(epoch, c, tmpdir),
            "logger": lambda: reporters.LoggerReporter(c, tmpdir),
            "tensorboard": lambda: reporters.TensorboardReporter(c, tmpdir)
    }[rep]() as _rep:
        inferencer = Inferencer(model, _rep)
        inferencer.load(save_file)
        inferencer.run(loader)
Пример #9
0
def test_update_scheduler():
    model = nn.Linear(10, 10)
    optimizer = optim.SGD(lr=0.1)
    trainer = trainers.SupervisedTrainer(model, optimizer, F.cross_entropy)
    trainer.update_scheduler(lr_scheduler.LambdaLR(lambda step: 0.1 ** step),
                             update_scheduler_by_epoch=False)
    loader = [(torch.randn(2, 10), torch.zeros(2, dtype=torch.long)) for _ in range(2)]
    trainer.train(loader)
    # lambda calculates the factor!
    assert list(trainer.optimizer.param_groups)[0]['lr'] == 0.1 ** 2

    trainer.update_scheduler(lr_scheduler.LambdaLR(lambda epoch: 0.1 ** epoch, last_epoch=1),
                             update_scheduler_by_epoch=True)
    trainer.train(loader)
    assert list(trainer.optimizer.param_groups)[0]['lr'] == 0.1 ** 3
Пример #10
0
def main(batch_size):
    layers = ["layer1.0.conv1", "layer2.0.conv1", "layer3.0.conv1", "fc"]
    train_loader, test_loader = cifar10_loaders(128)
    weight_save = callbacks.WeightSave("checkpoints")
    model = resnet20(num_classes=10)
    model2 = deepcopy(model)
    optimizer = torch.optim.SGD(params=model.parameters(),
                                lr=0.1,
                                momentum=0.9,
                                weight_decay=1e-4)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 50)
    trainer = trainers.SupervisedTrainer(model,
                                         optimizer,
                                         F.cross_entropy,
                                         scheduler=scheduler,
                                         callbacks=weight_save,
                                         verb=False)
    for ep in trange(100, ncols=80):
        trainer.train(train_loader)

    hooks1 = [CCAHook(model, name, svd_device=args.device) for name in layers]
    hooks2 = [CCAHook(model2, name, svd_device=args.device) for name in layers]
    device = next(model.parameters()).device
    model2.to(device)
    input = hooks1[0].data(train_loader.dataset,
                           batch_size=batch_size).to(device)
    history = []

    def distance():
        model.eval()
        model2.eval()
        with torch.no_grad():
            model(input)
            model2(input)
        return [h1.distance(h2) for h1, h2 in zip(hooks1, hooks2)]

    # 0 and 99
    history.append(distance())

    # 29 and 99, ...
    for ep in (29, 49, 99):
        saved = torch.load(weight_save.save_path / f"{ep}.pkl")
        model2.load_state_dict(saved["model"])
        history.append(distance())
    plot(history, layers)
Пример #11
0
def main():
    model = MODELS[args.teacher_model](num_classes=10)
    train_loader, test_loader = cifar10_loaders(args.batch_size)
    weight_decay = 1e-4 if "resnet" in args.teacher_model else 5e-4
    lr_decay = 0.1 if "resnet" in args.teacher_model else 0.2
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([50, 80], gamma=lr_decay)

    trainer = trainers.SupervisedTrainer(model,
                                         optimizer,
                                         F.cross_entropy,
                                         scheduler=scheduler)
    trainer.logger.info("Train the teacher model!")
    for _ in trange(args.teacher_epochs, ncols=80):
        trainer.train(train_loader)
        trainer.test(test_loader)

    teacher_model = model.eval()

    weight_decay = 1e-4 if "resnet" in args.student_model else 5e-4
    lr_decay = 0.1 if "resnet" in args.student_model else 0.2
    optimizer = optim.SGD(lr=1e-1, momentum=0.9, weight_decay=weight_decay)
    scheduler = lr_scheduler.MultiStepLR([50, 80], gamma=lr_decay)
    model = MODELS[args.student_model](num_classes=10)

    c = [callbacks.AccuracyCallback(), callbacks.LossCallback(), kl_loss]
    with reporters.TQDMReporter(
            range(args.student_epochs),
            callbacks=c) as tq, reporters.TensorboardReporter(c) as tb:
        trainer = DistillationTrainer(model,
                                      optimizer,
                                      F.cross_entropy,
                                      callbacks=[tq, tb],
                                      scheduler=scheduler,
                                      teacher_model=teacher_model,
                                      temperature=args.temperature)
        trainer.logger.info("Train the student model!")
        for _ in tq:
            trainer.train(train_loader)
            trainer.test(test_loader)
Пример #12
0
def main(cfg):
    if cfg.use_accimage:
        enable_accimage()
    data = DATASET_REGISTRY(cfg.data).setup(
        cfg.batch_size,
        num_workers=4,
        download=cfg.download,
        prefetch_factor=cfg.prefetch_factor,
        persistent_workers=cfg.persistent_workers)
    model = MODEL_REGISTRY(cfg.model)(num_classes=data.num_classes)
    optimizer = None if cfg.bn_no_wd else optim.SGD(
        lr=cfg.lr,
        momentum=0.9,
        weight_decay=cfg.weight_decay,
        multi_tensor=cfg.use_multi_tensor)
    scheduler = lr_scheduler.CosineAnnealingWithWarmup(cfg.epochs, 4, 5)

    if cfg.bn_no_wd:

        def set_optimizer(trainer):
            bn_params = []
            non_bn_parameters = []
            for name, p in trainer.model.named_parameters():
                if "norm" in name:
                    bn_params.append(p)
                else:
                    non_bn_parameters.append(p)
            optim_params = [
                {
                    "params": bn_params,
                    "weight_decay": 0
                },
                {
                    "params": non_bn_parameters,
                    "weight_decay": cfg.weight_decay
                },
            ]
            trainer.optimizer = torch.optim.SGD(optim_params,
                                                lr=1e-1,
                                                momentum=0.9)

        trainers.SupervisedTrainer.set_optimizer = set_optimizer

    with trainers.SupervisedTrainer(
            model,
            optimizer,
            F.cross_entropy,
            reporters=[reporters.TensorboardReporter('.')],
            scheduler=scheduler,
            use_amp=cfg.use_amp,
            use_channel_last=cfg.use_channel_last,
            debug=cfg.debug) as trainer:

        for _ in trainer.epoch_range(cfg.epochs):
            trainer.train(data.train_loader)
            trainer.test(data.test_loader)
            trainer.scheduler.step()

        print(
            f"Max Test Accuracy={max(trainer.reporter.history('accuracy/test')):.3f}"
        )