Пример #1
0
def run(args):
    # Load the input data
    if args.verbose: print('* Loading infmat and heat files...')
    infmat = hnio.load_infmat(args.infmat_file, args.infmat_name)
    full_index2gene = hnio.load_index(args.infmat_index_file)

    using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json'
    if using_json_heat:
        heat = json.load(open(args.heat_file))['heat']
    else:
        heat = hnio.load_heat_tsv(args.heat_file)
    print("* Loaded heat scores for %s genes" % len(heat))

    # filter out genes not in the network
    heat = hnheat.filter_heat_to_network_genes(heat,
                                               set(full_index2gene.values()))

    # genes with score 0 cannot be in output components, but are eligible for heat in permutations
    heat, addtl_genes = hnheat.filter_heat(
        heat, None, False, 'There are ## genes with heat score 0')
    if args.verbose: print('* Creating similarity matrix...')
    sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True)

    # Create and output the dendrogram
    createDendrogram(sim, list(index2gene.values()), args.output_directory,
                     vars(args), args.verbose)
Пример #2
0
def load_direct_heat(args):
    heat = hnio.load_heat_tsv(args.heat_file)
    
    #ensure that all heat scores are positive
    bad_genes = [gene for gene in heat if heat[gene] < 0]
    if bad_genes:
        raise ValueError("ERROR: All gene heat scores must be non-negative. There are %s genes with\
                          negative heat scores: %s" % (len(bad_genes), bad_genes))
    
    heat, excluded_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score)
    return heat, excluded_genes
Пример #3
0
def load_direct_heat(args):
    heat = hnio.load_heat_tsv(args.heat_file)
    print "* Loading heat scores for %s genes" % len(heat)

    #ensure that all heat scores are positive
    bad_genes = [gene for gene in heat if heat[gene] < 0]
    if bad_genes:
        raise ValueError("ERROR: All gene heat scores must be non-negative. There are %s genes with\
                          negative heat scores: %s" % (len(bad_genes), bad_genes))

    heat, _ = hnheat.filter_heat(heat, args.min_heat_score, True,
                                 'Assigning score 0 to ## genes with score below %s' % args.min_heat_score)
    return heat
Пример #4
0
def load_direct_heat(args):
    heat = hnio.load_heat_tsv(args.heat_file)
    print("* Loading heat scores for %s genes" % len(heat))

    #ensure that all heat scores are positive
    bad_genes = [gene for gene in heat if heat[gene] < 0]
    if bad_genes:
        raise ValueError(
            "ERROR: All gene heat scores must be non-negative. There are %s genes with\
                          negative heat scores: %s" %
            (len(bad_genes), bad_genes))

    heat, _ = hnheat.filter_heat(
        heat, args.min_heat_score, True,
        'Assigning score 0 to ## genes with score below %s' %
        args.min_heat_score)
    return heat
Пример #5
0
def run(args):
	# Load the input data
	if args.verbose: print '* Loading infmat and heat files...'
	infmat = hnio.load_infmat(args.infmat_file, args.infmat_name)
	full_index2gene = hnio.load_index(args.infmat_index_file)

	using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json'
	if using_json_heat:
	    heat = json.load(open(args.heat_file))['heat']
	else:
	    heat = hnio.load_heat_tsv(args.heat_file)
	print "* Loaded heat scores for %s genes" % len(heat)

	# filter out genes not in the network
	heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values()))

	# genes with score 0 cannot be in output components, but are eligible for heat in permutations
	heat, addtl_genes = hnheat.filter_heat(heat, None, False, 'There are ## genes with heat score 0')
	if args.verbose: print '* Creating similarity matrix...'
	sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True)

	# Create and output the dendrogram
	createDendrogram( sim, index2gene.values(), args.output_directory, vars(args), args.verbose )
Пример #6
0
def run(args):
    # create output directory if doesn't exist; warn if it exists and is not empty
    if not os.path.exists(args.output_directory):
        os.makedirs(args.output_directory)
    if len(os.listdir(args.output_directory)) > 0:
        print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. "
              "(Ctrl-c to cancel).")

    infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME]
    infmat_index = hnio.load_index(args.infmat_index_file)
    heat = hnio.load_heat_tsv(args.heat_file)
    
    # filter out genes with heat score less than min_heat_score
    heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score)

    # find smallest delta 
    deltas = ft.get_deltas_for_network(args.permuted_networks_path, heat, INFMAT_NAME,
                                       infmat_index, MAX_CC_SIZES, 
				                       args.num_permutations, args.parallel)
    
    # and run HotNet with the median delta for each size
    run_deltas = [np.median(deltas[size]) for size in deltas]
    M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys()))
    h = hn.heat_vec(heat, gene_index)
    sim = hn.similarity_matrix(M, h)

    # load interaction network edges and determine location of static HTML files for visualization
    edges = hnio.load_ppi_edges(args.edge_file) if args.edge_file else None
    index_file = '%s/viz_files/%s' % (hotnet2.__file__.rsplit('/', 1)[0], VIZ_INDEX)
    subnetworks_file = '%s/viz_files/%s' % (hotnet2.__file__.rsplit('/', 1)[0], VIZ_SUBNETWORKS)
    gene2index = dict([(gene, index) for index, gene in infmat_index.iteritems()])

    for delta in run_deltas: 
        # create output directory
        delta_out_dir = args.output_directory + "/delta_" + str(delta)
        if not os.path.isdir(delta_out_dir):
            os.mkdir(delta_out_dir)
        
        # find connected components
        G = hn.weighted_graph(sim, gene_index, delta)
        ccs = hn.connected_components(G, args.min_cc_size)
        
        # calculate significance (using all genes with heat scores)
        print "* Performing permuted heat statistical significance..."
        heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel)
        sizes = range(2, 11)
        print "\t- Using no. of components >= k (k \\in",
        print "[%s, %s]) as statistic" % (min(sizes), max(sizes))
        sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations,
                                                          delta, sizes, args.parallel)
        real_counts = stats.num_components_min_size(G, sizes)
        size2real_counts = dict(zip(sizes, real_counts))
        sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations)
    
        # sort ccs list such that genes within components are sorted alphanumerically, and components
        # are sorted first by length, then alphanumerically by name of the first gene in the component
        ccs = [sorted(cc) for cc in ccs]
        ccs.sort(key=lambda comp: comp[0])
        ccs.sort(key=len, reverse=True)
            
        # write output
        heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}}
        heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w')
        json.dump(heat_dict, heat_out, indent=4)
        heat_out.close()
        
        args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON
        args.delta = delta
        output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs),
                       "components": ccs, "statistics": sizes2stats}
        hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV,
                                       sizes2stats)
        
        json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w')
        json.dump(output_dict, json_out, indent=4)
        json_out.close()
        
        hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs)
        
        # write visualization output if edge file given
        if args.edge_file:
            viz_data = {"delta": delta, 'subnetworks': list()}
            for cc in ccs:
                viz_data['subnetworks'].append(viz.get_component_json(cc, heat, edges, gene2index,
                                                                      args.network_name))
                
            delta_viz_dir = '%s/viz/delta%s' % (args.output_directory, delta)
            if not os.path.isdir(delta_viz_dir):
                os.makedirs(delta_viz_dir)
            viz_out = open('%s/subnetworks.json' % delta_viz_dir, 'w')
            json.dump(viz_data, viz_out, indent=4)
            viz_out.close()
    
            shutil.copy(subnetworks_file, delta_viz_dir)
    
    if args.edge_file:
        viz.write_index_file(index_file, '%s/viz/%s' % (args.output_directory, VIZ_INDEX), run_deltas)