def run(args): # Load the input data if args.verbose: print('* Loading infmat and heat files...') infmat = hnio.load_infmat(args.infmat_file, args.infmat_name) full_index2gene = hnio.load_index(args.infmat_index_file) using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json' if using_json_heat: heat = json.load(open(args.heat_file))['heat'] else: heat = hnio.load_heat_tsv(args.heat_file) print("* Loaded heat scores for %s genes" % len(heat)) # filter out genes not in the network heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values())) # genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = hnheat.filter_heat( heat, None, False, 'There are ## genes with heat score 0') if args.verbose: print('* Creating similarity matrix...') sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True) # Create and output the dendrogram createDendrogram(sim, list(index2gene.values()), args.output_directory, vars(args), args.verbose)
def load_direct_heat(args): heat = hnio.load_heat_tsv(args.heat_file) #ensure that all heat scores are positive bad_genes = [gene for gene in heat if heat[gene] < 0] if bad_genes: raise ValueError("ERROR: All gene heat scores must be non-negative. There are %s genes with\ negative heat scores: %s" % (len(bad_genes), bad_genes)) heat, excluded_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) return heat, excluded_genes
def load_direct_heat(args): heat = hnio.load_heat_tsv(args.heat_file) print "* Loading heat scores for %s genes" % len(heat) #ensure that all heat scores are positive bad_genes = [gene for gene in heat if heat[gene] < 0] if bad_genes: raise ValueError("ERROR: All gene heat scores must be non-negative. There are %s genes with\ negative heat scores: %s" % (len(bad_genes), bad_genes)) heat, _ = hnheat.filter_heat(heat, args.min_heat_score, True, 'Assigning score 0 to ## genes with score below %s' % args.min_heat_score) return heat
def load_direct_heat(args): heat = hnio.load_heat_tsv(args.heat_file) print("* Loading heat scores for %s genes" % len(heat)) #ensure that all heat scores are positive bad_genes = [gene for gene in heat if heat[gene] < 0] if bad_genes: raise ValueError( "ERROR: All gene heat scores must be non-negative. There are %s genes with\ negative heat scores: %s" % (len(bad_genes), bad_genes)) heat, _ = hnheat.filter_heat( heat, args.min_heat_score, True, 'Assigning score 0 to ## genes with score below %s' % args.min_heat_score) return heat
def run(args): # Load the input data if args.verbose: print '* Loading infmat and heat files...' infmat = hnio.load_infmat(args.infmat_file, args.infmat_name) full_index2gene = hnio.load_index(args.infmat_index_file) using_json_heat = os.path.splitext(args.heat_file.lower())[1] == '.json' if using_json_heat: heat = json.load(open(args.heat_file))['heat'] else: heat = hnio.load_heat_tsv(args.heat_file) print "* Loaded heat scores for %s genes" % len(heat) # filter out genes not in the network heat = hnheat.filter_heat_to_network_genes(heat, set(full_index2gene.values())) # genes with score 0 cannot be in output components, but are eligible for heat in permutations heat, addtl_genes = hnheat.filter_heat(heat, None, False, 'There are ## genes with heat score 0') if args.verbose: print '* Creating similarity matrix...' sim, index2gene = hn.similarity_matrix(infmat, full_index2gene, heat, True) # Create and output the dendrogram createDendrogram( sim, index2gene.values(), args.output_directory, vars(args), args.verbose )
def run(args): # create output directory if doesn't exist; warn if it exists and is not empty if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) if len(os.listdir(args.output_directory)) > 0: print("WARNING: Output directory is not empty. Any conflicting files will be overwritten. " "(Ctrl-c to cancel).") infmat = scipy.io.loadmat(args.infmat_file)[INFMAT_NAME] infmat_index = hnio.load_index(args.infmat_index_file) heat = hnio.load_heat_tsv(args.heat_file) # filter out genes with heat score less than min_heat_score heat, addtl_genes, args.min_heat_score = hnheat.filter_heat(heat, args.min_heat_score) # find smallest delta deltas = ft.get_deltas_for_network(args.permuted_networks_path, heat, INFMAT_NAME, infmat_index, MAX_CC_SIZES, args.num_permutations, args.parallel) # and run HotNet with the median delta for each size run_deltas = [np.median(deltas[size]) for size in deltas] M, gene_index = hn.induce_infmat(infmat, infmat_index, sorted(heat.keys())) h = hn.heat_vec(heat, gene_index) sim = hn.similarity_matrix(M, h) # load interaction network edges and determine location of static HTML files for visualization edges = hnio.load_ppi_edges(args.edge_file) if args.edge_file else None index_file = '%s/viz_files/%s' % (hotnet2.__file__.rsplit('/', 1)[0], VIZ_INDEX) subnetworks_file = '%s/viz_files/%s' % (hotnet2.__file__.rsplit('/', 1)[0], VIZ_SUBNETWORKS) gene2index = dict([(gene, index) for index, gene in infmat_index.iteritems()]) for delta in run_deltas: # create output directory delta_out_dir = args.output_directory + "/delta_" + str(delta) if not os.path.isdir(delta_out_dir): os.mkdir(delta_out_dir) # find connected components G = hn.weighted_graph(sim, gene_index, delta) ccs = hn.connected_components(G, args.min_cc_size) # calculate significance (using all genes with heat scores) print "* Performing permuted heat statistical significance..." heat_permutations = p.permute_heat(heat, args.num_permutations, addtl_genes, args.parallel) sizes = range(2, 11) print "\t- Using no. of components >= k (k \\in", print "[%s, %s]) as statistic" % (min(sizes), max(sizes)) sizes2counts = stats.calculate_permuted_cc_counts(infmat, infmat_index, heat_permutations, delta, sizes, args.parallel) real_counts = stats.num_components_min_size(G, sizes) size2real_counts = dict(zip(sizes, real_counts)) sizes2stats = stats.compute_statistics(size2real_counts, sizes2counts, args.num_permutations) # sort ccs list such that genes within components are sorted alphanumerically, and components # are sorted first by length, then alphanumerically by name of the first gene in the component ccs = [sorted(cc) for cc in ccs] ccs.sort(key=lambda comp: comp[0]) ccs.sort(key=len, reverse=True) # write output heat_dict = {"heat": heat, "parameters": {"heat_file": args.heat_file}} heat_out = open(os.path.abspath(delta_out_dir) + "/" + HEAT_JSON, 'w') json.dump(heat_dict, heat_out, indent=4) heat_out.close() args.heat_file = os.path.abspath(delta_out_dir) + "/" + HEAT_JSON args.delta = delta output_dict = {"parameters": vars(args), "sizes": hn.component_sizes(ccs), "components": ccs, "statistics": sizes2stats} hnio.write_significance_as_tsv(os.path.abspath(delta_out_dir) + "/" + SIGNIFICANCE_TSV, sizes2stats) json_out = open(os.path.abspath(delta_out_dir) + "/" + JSON_OUTPUT, 'w') json.dump(output_dict, json_out, indent=4) json_out.close() hnio.write_components_as_tsv(os.path.abspath(delta_out_dir) + "/" + COMPONENTS_TSV, ccs) # write visualization output if edge file given if args.edge_file: viz_data = {"delta": delta, 'subnetworks': list()} for cc in ccs: viz_data['subnetworks'].append(viz.get_component_json(cc, heat, edges, gene2index, args.network_name)) delta_viz_dir = '%s/viz/delta%s' % (args.output_directory, delta) if not os.path.isdir(delta_viz_dir): os.makedirs(delta_viz_dir) viz_out = open('%s/subnetworks.json' % delta_viz_dir, 'w') json.dump(viz_data, viz_out, indent=4) viz_out.close() shutil.copy(subnetworks_file, delta_viz_dir) if args.edge_file: viz.write_index_file(index_file, '%s/viz/%s' % (args.output_directory, VIZ_INDEX), run_deltas)