def main(benchmark_name, dataset_name, dimensions, method_name, num_runs, run_start, num_iterations, eta, min_budget, max_budget, input_dir, output_dir): benchmark = make_benchmark(benchmark_name, dimensions=dimensions, dataset_name=dataset_name, input_dir=input_dir) name = make_name(benchmark_name, dimensions=dimensions, dataset_name=dataset_name) output_path = Path(output_dir).joinpath(name, method_name) output_path.mkdir(parents=True, exist_ok=True) options = dict(eta=eta, min_budget=min_budget, max_budget=max_budget) with output_path.joinpath("options.yaml").open('w') as f: yaml.dump(options, f) for run_id in range(run_start, num_runs): NS = hpns.NameServer(run_id=run_id, host='localhost', port=0) ns_host, ns_port = NS.start() num_workers = 1 workers = [] for worker_id in range(num_workers): w = BenchmarkWorker(benchmark=benchmark, nameserver=ns_host, nameserver_port=ns_port, run_id=run_id, id=worker_id) w.run(background=True) workers.append(w) rs = RandomSearch(configspace=benchmark.get_config_space(), run_id=run_id, nameserver=ns_host, nameserver_port=ns_port, ping_interval=10, **options) results = rs.run(num_iterations, min_n_workers=num_workers) rs.shutdown(shutdown_workers=True) NS.shutdown() data = HpBandSterLogs(results).to_frame() data.to_csv(output_path.joinpath(f"{run_id:03d}.csv")) return 0
def get_parameters(train_data, kFold, iterations, save=False, filepath = './result/loss_time_rs.csv'): parser = argparse.ArgumentParser(description='Example 1 - sequential and local execution.') parser.add_argument('--min_budget', type=float, help='Minimum budget used during the optimization.', default=1) parser.add_argument('--max_budget', type=float, help='Maximum budget used during the optimization.', default=1) parser.add_argument('--n_iterations', type=int, help='Number of iterations performed by the optimizer', default=iterations) # max value = 4 # parser.add_argument('--worker', help='Flag to turn this into a worker process', action='store_true') parser.add_argument('--shared_directory', type=str,help='A directory that is accessible for all processes, e.g. a NFS share.', default='./result') # parser.add_argument('--nic_name', type=str, default='lo') args = parser.parse_args() result_logger = hpres.json_result_logger(directory=args.shared_directory, overwrite=True) NS = hpns.NameServer(run_id='RandomSearch', host='127.0.0.1', port=None) NS.start() w = worker(train_data, kFold, nameserver='127.0.0.1', run_id='RandomSearch') w.run(background=True) randomSearch = RandomSearch(configspace=w.get_configspace(), run_id='RandomSearch', nameserver='127.0.0.1', eta=3, min_budget=args.min_budget, max_budget=args.max_budget, result_logger=result_logger ) res = randomSearch.run(n_iterations=args.n_iterations) randomSearch.shutdown(shutdown_workers=True) NS.shutdown() id2config = res.get_id2config_mapping() incumbent = res.get_incumbent_id() info = res.get_runs_by_id(incumbent) parameter = id2config[incumbent]['config'] min_error = info[0]['loss'] if save: all_info = res.get_all_runs() timepoint_dic = [] loss_dic = [] for i in all_info: timepoint_dic.append(i['time_stamps']['finished']) loss_dic.append(i['loss']) save_to_csv.save(filepath, timepoint_dic, loss_dic) return parameter, min_error
# Now we can instantiate a worker, providing the mandatory information # Besides the sleep_interval, we need to define the nameserver information and # the same run_id as above. After that, we can start the worker in the background, # where it will wait for incoming configurations to evaluate. w = MyWorker(nameserver='127.0.0.1', run_id='example1') w.run(background=True) # Step 3: Run an optimizer # Now we can create an optimizer object and start the run. # Here, we run RandomSearch, but that is not essential. # The run method will return the `Result` that contains all runs performed. rs = RandomSearch(configspace=w.get_configspace(), run_id='example1', nameserver='127.0.0.1', min_budget=int(args.budget), max_budget=int(args.budget)) res = rs.run(n_iterations=args.n_iterations) # Step 4: Shutdown # After the optimizer run, we must shutdown the master and the nameserver. rs.shutdown(shutdown_workers=True) NS.shutdown() # Step 5: Analysis # Each optimizer returns a hpbandster.core.result.Result object. # It holds information about the optimization run like the incumbent (=best) configuration. # For further details about the Result object, see its documentation. # Here we simply print out the best config and some statistics about the performed runs. id2config = res.get_id2config_mapping() incumbent = res.get_incumbent_id() print('Best found configuration:', id2config[incumbent]['config'])
previous_run = None # Random search if hpo_method == 'rs': hpo_worker = RS(configspace=worker.get_configspace( args.default_config, args.test_mode, args.leaf, args.lr, args.tree), run_id=hpo_run_id, nameserver=ns_host, nameserver_port=ns_port, result_logger=result_logger, min_budget=args.max_budget, max_budget=args.max_budget, previous_result=previous_run) res = hpo_worker.run(n_iterations=args.n_iterations, min_n_workers=args.n_workers) # store results elif hpo_method == 'bohb': hpo_worker = BOHB(configspace=worker.get_configspace( args.default_config, args.test_mode, args.leaf, args.lr, args.tree), run_id=hpo_run_id, nameserver=ns_host, nameserver_port=ns_port, result_logger=result_logger, min_budget=args.min_budget, max_budget=args.max_budget, previous_result=previous_run) res = hpo_worker.run(n_iterations=args.n_iterations,
# where it will wait for incoming configurations to evaluate. w = MyWorker(nameserver='127.0.0.1', run_id='example1') w.run(background=True) # Step 3: Run an optimizer # Now we can create an optimizer object and start the run. # Here, we run RandomSearch, but that is not essential. # The run method will return the `Result` that contains all runs performed. rs = RandomSearch(configspace=w.get_configspace(exercise), run_id='example1', nameserver='127.0.0.1', min_budget=int(budget), max_budget=int(budget), result_logger=logger) res = rs.run(n_iterations=iterations) # Step 4: Shutdown # After the optimizer run, we must shutdown the master and the nameserver. rs.shutdown(shutdown_workers=True) NS.shutdown() # Step 5: Analysis # Each optimizer returns a hpbandster.core.result.Result object. # It holds information about the optimization run like the incumbent (=best) configuration. # For further details about the Result object, see its documentation. # Here we simply print out the best config and some statistics about the performed runs. id2config = res.get_id2config_mapping() incumbent = res.get_incumbent_id()