Пример #1
0
def _create_hpgl_shape(shape, strides=None):
	if strides is None:
		return _HPGL_SHAPE(data = _c_array(C.c_int, 3, shape),
				   strides = _c_array(C.c_int, 3, (1, shape[0], shape[0]*shape[1])))
	else:
		return _HPGL_SHAPE(data = _c_array(C.c_int, 3, shape),
				   strides = _c_array(C.c_int, 3, strides))
Пример #2
0
def lvm_kriging(prop, grid, mean_data, radiuses, max_neighbours, cov_model):
	out_prop = _clone_prop(prop)

	okp = _HPGL_OK_PARAMS(
		covariance_type = cov_model.type,
		ranges = cov_model.ranges,
		angles = cov_model.angles,
		sill = cov_model.sill,
		nugget = cov_model.nugget,
		radiuses = radiuses,
		max_neighbours = max_neighbours)

	sh_data = (C.c_int * 3)(grid.x, grid.y, grid.z)
	sh = _HPGL_SHAPE(data=sh_data)

	_hpgl_so.hpgl_lvm_kriging(
		prop.data, prop.mask, C.byref(sh), 
		mean_data, C.byref(sh),
		C.byref(okp),
		out_prop.data, out_prop.mask,
		C.byref(sh))

	return out_prop
Пример #3
0
def simple_kriging(prop, grid, radiuses, max_neighbours, cov_model, mean=None):
	out_prop = _clone_prop(prop)

	skp = _HPGL_SK_PARAMS(
		covariance_type = cov_model.type,
		ranges = cov_model.ranges,
		angles = cov_model.angles,
		sill = cov_model.sill,
		nugget = cov_model.nugget,
		radiuses = radiuses,
		max_neighbours = max_neighbours,
		automatic_mean = (mean is None),
		mean = (mean if mean != None else 0))

	sh_data = (C.c_int * 3)(grid.x, grid.y, grid.z)
	sh = _HPGL_SHAPE(data=sh_data)

	_hpgl_so.hpgl_simple_kriging(
		prop.data, prop.mask, 
		C.byref(sh), C.byref(skp),
		out_prop[0], out_prop[1],
		C.byref(sh))

	return out_prop