Пример #1
0
def hpskForClf(train_arrays, train_labels):
    estim = HyperoptEstimator(
        classifier=sgd('mySGD'),
        preprocessing=[],
        algo=tpe.suggest,
        max_evals=5,
    )
    #cross_val_score(estim, train_arrays, train_labels, cv=5, scoring='recall_macro').mean()
    estim.fit(train_arrays, train_labels)
    print(estim.best_model())
Пример #2
0
def bench_classifiers(name):
    classifiers = [
        ada_boost(name + '.ada_boost'),  # boo
        gaussian_nb(name + '.gaussian_nb'),  # eey
        knn(name + '.knn', sparse_data=True),  # eey
        linear_discriminant_analysis(name + '.linear_discriminant_analysis', n_components=1),  # eey
        random_forest(name + '.random_forest'),  # boo
        sgd(name + '.sgd')  # eey
    ]
    if xgboost:
        classifiers.append(xgboost_classification(name + '.xgboost'))  # boo
    return hp.choice('%s' % name, classifiers)
Пример #3
0
        n_job = 6
        select_classes = [0, 1, 2, 3, 4, 5]
        val_dist = X_val_mini.shape[0] / X_train_mini.shape[0]
        name = 'my_est_oVa'

        tic_mod_all = time.time()
        select_alg = [
            ada_boost(name + '.ada_boost'),
            gaussian_nb(name + '.gaussian_nb'),
            knn(name + '.knn', sparse_data=True),
            linear_discriminant_analysis(name +
                                         '.linear_discriminant_analysis',
                                         n_components=1),
            random_forest(name + '.random_forest'),
            sgd(name + '.sgd'),
            xgboost_classification(name + '.xgboost')
        ]

        # fitting models
        estim_one_vs_rest = dict()
        # scoring models
        algo_scoring = dict()
        save_score_path = r'C:/Users/anden/PycharmProjects/NovelEEG/results'
        for alg in [select_alg[args.index]]:
            tic_mod = time.time()
            print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
                  "running on %s" % (alg.name + '.one_V_all'),
                  "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
            clf_method = one_vs_rest(str(alg.name + '.one_V_all'),
                                     estimator=alg,