def __init__(self, model_file='put_your_model_file(or files)_name_here'): # You should # 1. create the model object # 2. load your state_dict # 3. call cuda() # self.model = ... # self.batch_size = 1 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model1 = get_seg_model(get_config()).to(self.device) self.model1.load_state_dict(torch.load('../PT_FILES/HRNET_RM_pretrain03.pt', map_location=self.device)) self.model2 = BoundingBox().double().to(self.device) self.model2.load_state_dict(torch.load('../PT_FILES/bbox_no_pretrain_50.pt', map_location=self.device)) pass
def __init__(self, model_file='put_your_model_file_name_here'): # You should # 1. create the model object # 2. load your state_dict # 3. call cuda() # self.model = ... # self.batch_size = 1 # set device self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") #### model 1: predict Binary RoadMap #### self.model1 = get_seg_model(get_config()).to(self.device) self.model1.load_state_dict( torch.load('HRNET_RM_labeled_data01.pt', map_location=self.device)) # TODO: self.model1.load_state_dict(torch.load('classification.pth', map_location=self.device)) #### model 2: predict Bounding Boxes #### self.model2 = BoundingBox().to(self.device) # TODO: self.model2.load_state_dict(torch.load('classification.pth', map_location=self.device)) pass
import hrnet import torch import config.hrnet_config as cfg if __name__ == "__main__": net = hrnet.get_seg_model(cfg.hr_config) img = torch.ones((1, 3, 256, 256)) out = net(img) print(out.shape)
transform=transform, extra_info=False ) labeled_valset = LabeledDataset( image_folder=image_folder, annotation_file=annotation_csv, scene_index=val_index, transform=transform, extra_info=False ) trainloader = torch.utils.data.DataLoader(labeled_trainset, batch_size=2, shuffle=True, num_workers=2, collate_fn=collate_fn) valloader = torch.utils.data.DataLoader(labeled_valset, batch_size=2, shuffle=True, num_workers=2, collate_fn=collate_fn) model = get_seg_model(get_config()).to(device) # for param in model.parameters(): # param.requires_grad = True criterion = torch.nn.BCELoss() #param_list = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD( [{'params': filter(lambda p: p.requires_grad, model.parameters()), 'lr': 0.0001}], lr=0.0001, momentum=0.9, weight_decay=0.0001, nesterov=False, ) best_val_loss = 100