def reorder_matrix(n, rowind, colptr, icntl=[0, 6], jcntl=[0, 0], weight=[2, 1]): """Helper function called by `sloan` and `rcm`. It performs the bulk of the work when applying Sloan's method or the reverse Cuthill-McKee algorithm to a symmetric sparse matrix. """ # Make room for pattern of the whole matrix and adjust to be 1-based icptr = colptr.copy() + 1 irn = np.empty(2 * (icptr[-1] - 1), dtype=np.int32) irn[:icptr[-1] - 1] = rowind.copy() + 1 # Check data info = _mc60.mc60ad(irn, icptr, icntl) # Compute supervariables nsup, svar, vars = _mc60.mc60bd(irn, icptr) # Permute reduced matrix permsv = np.empty(nsup, dtype=np.int32) pair = np.empty((2, nsup / 2), dtype=np.int32) info = _mc60.mc60cd(n, irn, icptr[:nsup + 1], vars[:nsup], jcntl, permsv, weight, pair) # Compute profile, maximum wavefront, semi-bandwidth and root-mean-square # wavefront of the permuted matrix rinfo = _mc60.mc60fd(n, irn, icptr[:nsup + 1], vars[:nsup], permsv) # Obtain variable permutation from supervariable permutation perm, possv = _mc60.mc60dd(svar, vars[:nsup], permsv) # Adjust permutation to make it 0-based perm -= 1 # There are other things to return! return (perm, rinfo)
def test_spec_sheet(self): """Solve example from the spec sheet. Ordering http://www.hsl.rl.ac.uk/specs/mc60.pdf """ icntl = np.array([0, 6], dtype=np.int32) # Abort on error jcntl = np.array([0, 0], dtype=np.int32) # Sloan's alg with auto choice weight = np.array([2, 1]) # Weights in Sloan's alg # Store lower triangle of symmetric matrix in csr format (1-based) n = 5 icptr = np.array([1, 6, 8, 9, 10, 11], dtype=np.int32) # nnz = 10 irn = np.empty(2 * (icptr[-1] - 1), dtype=np.int32) irn[:icptr[-1] - 1] = np.array([1, 2, 3, 4, 5, 2, 3, 3, 4, 5], dtype=np.int32) # Check data info = _mc60.mc60ad(irn, icptr, icntl) # Compute supervariables nsup, svar, vars = _mc60.mc60bd(irn, icptr) assert nsup == 4 print 'The number of supervariables is ', nsup # Permute reduced matrix permsv = np.empty(nsup, dtype=np.int32) pair = np.empty((2, nsup / 2), dtype=np.int32) info = _mc60.mc60cd(n, irn, icptr[:nsup + 1], vars[:nsup], jcntl, permsv, weight, pair) # Compute profile and wavefront rinfo = _mc60.mc60fd(n, irn, icptr[:nsup + 1], vars[:nsup], permsv) # Obtain variable permutation from supervariable permutation perm, possv = _mc60.mc60dd(svar, vars[:nsup], permsv) assert np.array_equal(perm, np.array([3, 5, 4, 1, 2], np.int32)) assert rinfo[0] == 10
# Make room for pattern of the whole matrix irn = np.empty(2 * (icptr[-1] - 1), dtype=np.int32) irn[:icptr[-1] - 1] = M.ind.copy() + 1 # Check data info = _mc60.mc60ad(irn, icptr, icntl) # Compute supervariables nsup, svar, vars = _mc60.mc60bd(irn, icptr) print 'The number of supervariables is ', nsup # Permute reduced matrix permsv = np.empty(nsup, dtype=np.int32) pair = np.empty((2, nsup / 2), dtype=np.int32) info = _mc60.mc60cd(n, irn, icptr[:nsup + 1], vars[:nsup], jcntl, permsv, weight, pair) # Compute profile and wavefront rinfo = _mc60.mc60fd(n, irn, icptr[:nsup + 1], vars[:nsup], permsv) # Obtain variable permutation from supervariable permutation perm, possv = _mc60.mc60dd(svar, vars[:nsup], permsv) np.set_printoptions(precision=3, linewidth=80, threshold=10, edgeitems=3) print 'The variable permutation is ', perm print 'The profile is ', rinfo[0] print 'The maximum wavefront is ', rinfo[1] print 'The semibandwidth is ', rinfo[2] print 'The root-mean-square wavefront is ', rinfo[3] try: