Пример #1
0
def Ft_aircooler(Thi, Tho, Tci, Tco, Ntp=1, rows=1):
    r'''Calculates log-mean temperature difference correction factor for
    a crossflow heat exchanger, as in an Air Cooler. Method presented in [1]_,
    fit to other's nonexplicit work. Error is < 0.1%. Requires number of rows
    and tube passes as well as stream temperatures.

    .. math::
        F_T = 1 - \sum_{i=1}^m \sum_{k=1}^n a_{i,k}(1-r_{1,m})^k\sin(2i\arctan R)

        R = \frac{T_{hi} - T_{ho}}{T_{co}-T_{ci}}

        r_{1,m} = \frac{\Delta T_{lm}}{T_{hi} - T_{ci}}

    Parameters
    ----------
    Thi : float
        Temperature of hot fluid in [K]
    Tho : float
        Temperature of hot fluid out [K]
    Tci : float
        Temperature of cold fluid in [K]
    Tco : float
        Temperature of cold fluid out [K]
    Ntp : int
        Number of passes the tubeside fluid will flow through [-]
    rows : int
        Number of rows of tubes [-]

    Returns
    -------
    Ft : float
        Log-mean temperature difference correction factor [-]

    Notes
    -----
    This equation assumes that the hot fluid is tubeside, as in the case of air
    coolers. The model is not symmetric, so ensure to switch around the inputs
    if using this function for other purposes.

    This equation appears in [1]_. It has been verified.
    For some cases, approximations are made to match coefficients with the
    number of tube passes and rows provided.
    16 coefficients are used for each case; 8 cases are considered:

    * 1 row 1 pass
    * 2 rows 1 pass
    * 2 rows 2 passes
    * 3 rows 1 pass
    * 3 rows 3 passes
    * 4 rows 1 pass
    * 4 rows 2 passes
    * 4 rows 4 passes

    Examples
    --------
    >>> Ft_aircooler(Thi=125., Tho=45., Tci=25., Tco=95., Ntp=1, rows=4)
    0.5505093604092708

    References
    ----------
    .. [1] Roetzel, W., and F. J. L. Nicole. "Mean Temperature Difference for
       Heat Exchanger Design-A General Approximate Explicit Equation." Journal
       of Heat Transfer 97, no. 1 (February 1, 1975): 5-8.
       doi:10.1115/1.3450288
    '''
    dTlm = LMTD(Thi=Thi, Tho=Tho, Tci=Tci, Tco=Tco)
    rlm = dTlm / (Thi - Tci)
    R = (Thi - Tho) / (Tco - Tci)
    #    P = (Tco-Tci)/(Thi-Tci)

    if Ntp == 1 and rows == 1:
        coefs = _crossflow_1_row_1_pass
    elif Ntp == 1 and rows == 2:
        coefs = _crossflow_2_rows_1_pass
    elif Ntp == 1 and rows == 3:
        coefs = _crossflow_3_rows_1_pass
    elif Ntp == 1 and rows == 4:
        coefs = _crossflow_4_rows_1_pass
    elif Ntp == 1 and rows > 4:
        # A reasonable assumption
        coefs = _crossflow_4_rows_1_pass
    elif Ntp == 2 and rows == 2:
        coefs = _crossflow_2_rows_2_pass
    elif Ntp == 3 and rows == 3:
        coefs = _crossflow_3_rows_3_pass
    elif Ntp == 4 and rows == 4:
        coefs = _crossflow_4_rows_4_pass
    elif Ntp > 4 and rows > 4 and Ntp == rows:
        # A reasonable assumption
        coefs = _crossflow_4_rows_4_pass
    elif Ntp == 2 and rows == 4:
        coefs = _crossflow_4_rows_2_pass
    else:
        # A bad assumption, but hey, gotta pick something.
        coefs = _crossflow_4_rows_2_pass
    tot = 0
    atanR = atan(R)
    cmps = range(len(coefs))
    for k in cmps:
        x0 = (1. - rlm)**(k + 1.)
        for i in cmps:
            tot += coefs[k][i] * x0 * sin(2. * (i + 1.) * atanR)
    return 1. - tot
Пример #2
0
def Ft_aircooler(Thi=None, Tho=None, Tci=None, Tco=None, Ntp=1, rows=1):
    r'''Calculates log-mean temperature difference correction factor for
    a crossflow heat exchanger, as in an Air Cooler. Method presented in [1]_,
    fit to other's nonexplicit work. Error is < 0.1%. Requires number of rows
    and tube passes as well as stream temperatures.

    .. math::
        F_T = 1 - \sum_{i=1}^m \sum_{k=1}^n a_{i,k}(1-r_{1,m})^k\sin(2i\arctan R)

        R = \frac{T_{hi} - T_{ho}}{T_{co}-T_{ci}}

        r_{1,m} = \frac{\Delta T_{lm}}{T_{hi} - T_{ci}}

    Parameters
    ----------
    Thi : float
        Temperature of hot fluid in [K]
    Tho : float
        Temperature of hot fluid out [K]
    Tci : float
        Temperature of cold fluid in [K]
    Tco : float
        Temperature of cold fluid out [K]

    Returns
    -------
    Ft : float
        Log-mean temperature difference correction factor []

    Notes
    -----
    This equation assumes that the hot fluid is tubeside, as in the case of air
    coolers. The model is not symmetric, so ensure to switch around the inputs
    if using this function for other purposes.

    This equation appears in [1]_. It has been verified.
    For some cases, approximations are made to match coefficients with the
    number of tube passes and rows provided.
    16 coefficients are used for each case; 8 cases are considered:

    * 1 row 1 pass
    * 2 rows 1 pass
    * 2 rows 2 passes
    * 3 rows 1 pass
    * 3 rows 3 passes
    * 4 rows 1 pass
    * 4 rows 2 passes
    * 4 rows 4 passes

    Examples
    --------
    Example 1 as in HTFS manual.
    Example 2 as in [1]_; author rounds to obtain a slightly different result.

    >>> Ft_aircooler(Thi=93., Tho=52., Tci=35, Tco=54.59, Ntp=2, rows=4)
    0.9570456123827129
    >>> Ft_aircooler(Thi=125., Tho=45., Tci=25., Tco=95., Ntp=1, rows=4)
    0.5505093604092708

    References
    ----------
    .. [1] Roetzel, W., and F. J. L. Nicole. "Mean Temperature Difference for
       Heat Exchanger Design-A General Approximate Explicit Equation." Journal
       of Heat Transfer 97, no. 1 (February 1, 1975): 5-8.
       doi:10.1115/1.3450288
    '''
    dTlm = LMTD(Thi=Thi, Tho=Tho, Tci=Tci, Tco=Tco)
    rlm = dTlm / (Thi - Tci)
    R = (Thi - Tho) / (Tco - Tci)
    #    P = (Tco-Tci)/(Thi-Tci)

    if Ntp == 1 and rows == 1:
        coefs = _crossflow_1_row_1_pass
    elif Ntp == 1 and rows == 2:
        coefs = _crossflow_2_rows_1_pass
    elif Ntp == 1 and rows == 3:
        coefs = _crossflow_3_rows_1_pass
    elif Ntp == 1 and rows == 4:
        coefs = _crossflow_4_rows_1_pass
    elif Ntp == 1 and rows > 4:
        # A reasonable assumption
        coefs = _crossflow_4_rows_1_pass
    elif Ntp == 2 and rows == 2:
        coefs = _crossflow_2_rows_2_pass
    elif Ntp == 3 and rows == 3:
        coefs = _crossflow_3_rows_3_pass
    elif Ntp == 4 and rows == 4:
        coefs = _crossflow_4_rows_4_pass
    elif Ntp > 4 and rows > 4 and Ntp == rows:
        # A reasonable assumption
        coefs = _crossflow_4_rows_4_pass
    elif Ntp == 2 and rows == 4:
        coefs = _crossflow_4_rows_2_pass
    else:
        # A bad assumption, but hey, gotta pick something.
        coefs = _crossflow_4_rows_2_pass
    tot = 0

    atanR = atan(R)

    for k in range(len(coefs)):
        for i in range(len(coefs)):
            tot += coefs[k][i] * (1 - rlm)**(k + 1) * sin(2 * (i + 1) * atanR)
    return 1 - tot


#print Ft_aircooler(Thi=66.82794, Tho=47.52647, Tci=15.4667, Tco=51.5889) # some example?
#print [Ft_aircooler(Thi=93., Tho=52., Tci=35, Tco=54.59, Ntp=2, rows=4)] # , 0.957045612383, works, _crossflow_4_rows_2_pass
#print [Ft_aircooler(Thi=125., Tho=45., Tci=25., Tco=95., Ntp=1, rows=4)] # , _crossflow_4_rows_1_pass, 0.550509360409, close enough
#print [[Ft_aircooler(Thi=125., Tho=80., Tci=25., Tco=95., Ntp=i, rows=j) for i in range(1,6)] for j in range(1, 6)] # , _crossflow_4_rows_1_pass, 0.550509360409, close enough