Пример #1
0
 def __init__(self, world, parameters=default_parameters):
     self.world = world
     self.area_size = parameters['num_cells']
     self.num_areas = len(self.world.coordinates)
     # Make an RDSE for every location.
     self.enc = np.zeros(self.world.dims, dtype=object)
     enc_parameters = RDSE_Parameters()
     enc_parameters.size = self.area_size
     enc_parameters.sparsity = parameters['local_sparsity']
     enc_parameters.category = True
     for coords in self.world.coordinates:
         self.enc[coords] = RDSE(enc_parameters)
     # Make empty buffers for the working data.
     self.local = np.zeros(self.world.dims, dtype=object)
     self.gnw = np.zeros(self.world.dims, dtype=object)
     for coords in self.world.coordinates:
         self.local[coords] = SDR((self.area_size, ))
         self.gnw[coords] = SDR((self.area_size, ))
     # Make an instance of the model at every location.
     self.apical_denrites = np.zeros(self.world.dims, dtype=object)
     self.gnw_size = self.num_areas * self.area_size
     for coords in self.world.coordinates:
         self.apical_denrites[coords] = TemporalMemory(
             [self.area_size],  # column_dimensions
             cellsPerColumn=1,
             externalPredictiveInputs=self.gnw_size,
             seed=0,
             **parameters['apical_denrites'])
Пример #2
0
 def create_encoder(self):
     print("creating encoder...")
     print(self.setting("enc"))
     scalarEncoderParams = RDSE_Parameters()
     scalarEncoderParams.size = self.setting("enc").size
     scalarEncoderParams.sparsity = self.setting("enc").sparsity
     scalarEncoderParams.resolution = self.setting("enc").resolution
     scalarEncoder = RDSE(scalarEncoderParams)
     print()
     return scalarEncoder
Пример #3
0
 def _createRDSE(self, min_val=0, max_val=0):
     scalarEncoderParams = RDSE_Parameters()
     scalarEncoderParams.size = self.parameters["enc"]["value"]["size"]
     scalarEncoderParams.activeBits = self.parameters["enc"]["value"]["activeBits"]
     scalarEncoderParams.resolution = max(0.001, (max_val - min_val) / 130)
     scalarEncoderParams.seed = self.parameters["enc"]["value"]["seed"]
     return RDSE(scalarEncoderParams)
Пример #4
0
def sacler_data_randonscaler_method_1():
    pooler_data = []
    data = pickle.load(open('data/x_hat_v3.pkl', mode='rb'))
    col1 = data[:, 0:1].flatten()
    col2 = data[:, 1:2].flatten()
    col3 = data[:, 2:3].flatten()
    col4 = data[:, 3:4].flatten()
    parameter1 = RDSE_Parameters()
    parameter1.size = 2000
    parameter1.sparsity = 0.02
    parameter1.resolution = 0.66
    rsc1 = RDSE(parameter1)
    # Create SDR for 3D TSNE input plus one for magnitude for 128 D original vector.
    # Loop through all vectors one at the time
    # to create SDe for SP.
    for _x1, _x2, _x3, _x4 in zip(col1, col2, col3, col4):
        x_x1 = rsc1.encode(_x1)
        x_x2 = rsc1.encode(_x2)
        x_x3 = rsc1.encode(_x3)
        x_x4 = rsc1.encode(_x4)
        pooler_data.append(SDR(8000).concatenate([x_x1, x_x2, x_x3, x_x4]))
    return pooler_data
Пример #5
0
def SystemSetup(parameters, verbose=True):
    global agent, sensorEncoder, env, sensorLayer_sp, sensorLayer_SDR_columns
    global gridCellEncoder, locationlayer_SDR_cells
    global sensorLayer_tm

    if verbose:
        import pprint

        print("Parameters:")
        pprint.pprint(parameters, indent=4)
        print("")

    # create environment and the agent
    env = htm2d.environment.TwoDimensionalEnvironment(20, 20)
    agent = htm2d.agent.Agent()

    # load object from yml file
    with open(os.path.join(_OBJECTS_DIR, OBJECT_FILENAME), "r") as stream:
        try:
            env.load_object(stream)
        except yaml.YAMLError as exc:
            print(exc)

    # SENSOR LAYER --------------------------------------------------------------
    # setup sensor encoder
    sensorEncoderParams = RDSE_Parameters()
    sensorEncoderParams.category = True
    sensorEncoderParams.size = parameters["enc"]["size"]
    sensorEncoderParams.sparsity = parameters["enc"]["sparsity"]
    sensorEncoderParams.seed = parameters["enc"]["seed"]
    sensorEncoder = RDSE(sensorEncoderParams)

    # Create SpatialPooler
    spParams = parameters["sensorLayer_sp"]
    sensorLayer_sp = SpatialPooler(
        inputDimensions=(sensorEncoder.size, ),
        columnDimensions=(spParams["columnCount"], ),
        potentialPct=spParams["potentialPct"],
        potentialRadius=sensorEncoder.size,
        globalInhibition=True,
        localAreaDensity=spParams["localAreaDensity"],
        synPermInactiveDec=spParams["synPermInactiveDec"],
        synPermActiveInc=spParams["synPermActiveInc"],
        synPermConnected=spParams["synPermConnected"],
        boostStrength=spParams["boostStrength"],
        wrapAround=True,
    )
    sp_info = Metrics(sensorLayer_sp.getColumnDimensions(), 999999999)

    # Create an SDR to represent active columns, This will be populated by the
    # compute method below. It must have the same dimensions as the Spatial Pooler.
    sensorLayer_SDR_columns = SDR(spParams["columnCount"])

    # LOCATION LAYER ------------------------------------------------------------
    # Grid cell modules
    locParams = parameters["locationLayer"]

    gridCellEncoder = GridCellEncoder(
        size=locParams["cellCount"],
        sparsity=locParams["sparsity"],
        periods=locParams["periods"],
        seed=locParams["seed"],
    )

    locationlayer_SDR_cells = SDR(gridCellEncoder.dimensions)

    tmParams = parameters["sensorLayer_tm"]
    sensorLayer_tm = TemporalMemory(
        columnDimensions=(spParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
        externalPredictiveInputs=locParams["cellCount"],
    )
    tm_info = Metrics([sensorLayer_tm.numberOfCells()], 999999999)
Пример #6
0
def building_htm(len_data):
    global enc_info
    global sp_info
    global tm_info
    global anomaly_history
    global predictor
    global predictor_resolution
    global tm
    global sp
    global scalarEncoder
    global encodingWidth
    global dateEncoder

    # Initial message
    print("Building HTM for predicting trends...")

    # Default parameters in HTM
    default_parameters = {
        # There are 2 (3) encoders: "value" (RDSE) & "time" (DateTime weekend, timeOfDay)
        'enc': {
            "value": {
                'resolution': 0.88,
                'size': 700,
                'sparsity': 0.02
            },
            "time": {
                'timeOfDay': (30, 1)
            }  #, 'weekend': 21}
        },
        'predictor': {
            'sdrc_alpha': 0.1
        },
        'sp': {
            'boostStrength': 3.0,
            'columnCount': 1638,
            'localAreaDensity': 0.04395604395604396,
            'potentialPct': 0.85,
            'synPermActiveInc': 0.04,
            'synPermConnected': 0.13999999999999999,
            'synPermInactiveDec': 0.006
        },
        'tm': {
            'activationThreshold': 17,
            'cellsPerColumn': 13,
            'initialPerm': 0.21,
            'maxSegmentsPerCell': 128,
            'maxSynapsesPerSegment': 64,
            'minThreshold': 10,
            'newSynapseCount': 32,
            'permanenceDec': 0.1,
            'permanenceInc': 0.1
        },
        'anomaly': {
            'likelihood': {
                'probationaryPct': 0.1,
                'reestimationPeriod': 100
            }
        }
    }

    # Make the encoder
    print("- Make the encoder")
    dateEncoder = DateEncoder(
        timeOfDay=default_parameters["enc"]["time"]["timeOfDay"])
    scalarEncoderParams = RDSE_Parameters()
    scalarEncoderParams.size = default_parameters["enc"]["value"]["size"]
    scalarEncoderParams.sparsity = default_parameters["enc"]["value"][
        "sparsity"]
    scalarEncoderParams.resolution = default_parameters["enc"]["value"][
        "resolution"]
    scalarEncoder = RDSE(scalarEncoderParams)
    encodingWidth = (dateEncoder.size + scalarEncoder.size)
    enc_info = Metrics([encodingWidth], 999999999)

    # Make the SP
    print("- Make the SP")
    spParams = default_parameters["sp"]
    sp = SpatialPooler(inputDimensions=(encodingWidth, ),
                       columnDimensions=(spParams["columnCount"], ),
                       potentialPct=spParams["potentialPct"],
                       potentialRadius=encodingWidth,
                       globalInhibition=True,
                       localAreaDensity=spParams["localAreaDensity"],
                       synPermInactiveDec=spParams["synPermInactiveDec"],
                       synPermActiveInc=spParams["synPermActiveInc"],
                       synPermConnected=spParams["synPermConnected"],
                       boostStrength=spParams["boostStrength"],
                       wrapAround=True)
    sp_info = Metrics(sp.getColumnDimensions(), 999999999)

    # Temporal Memory Parameters
    print("- Make the TM")
    tmParams = default_parameters["tm"]
    tm = TemporalMemory(
        columnDimensions=(spParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"])
    tm_info = Metrics([tm.numberOfCells()], 999999999)

    # Setup Likelihood
    print("- Make Anomaly Score/Likelihood")
    anParams = default_parameters["anomaly"]["likelihood"]
    probationaryPeriod = int(
        math.floor(float(anParams["probationaryPct"]) * len_data))
    learningPeriod = int(math.floor(probationaryPeriod / 2.0))
    anomaly_history = AnomalyLikelihood(
        learningPeriod=learningPeriod,
        estimationSamples=probationaryPeriod - learningPeriod,
        reestimationPeriod=anParams["reestimationPeriod"])

    # Make predictor
    print("- Make the predictor")
    predictor = Predictor(steps=[1, 5],
                          alpha=default_parameters["predictor"]['sdrc_alpha'])
    predictor_resolution = 1

    # End message
    print("- Finish the building of HTM!")
    def initialize(self, input_min=0, input_max=0):
        # setup spatial anomaly
        if self.useSpatialAnomaly:
            self.spatial_tolerance = self.parameters["spatial_tolerance"]

        ## setup Enc, SP, TM
        # Make the Encoders.  These will convert input data into binary representations.
        self.encTimestamp = DateEncoder(timeOfDay=self.parameters["enc"]["time"]["timeOfDay"])

        scalarEncoderParams = RDSE_Parameters()
        scalarEncoderParams.size = self.parameters["enc"]["value"]["size"]
        scalarEncoderParams.activeBits = self.parameters["enc"]["value"]["activeBits"]
        scalarEncoderParams.resolution = max(0.001, (input_max - input_min) / 130)
        scalarEncoderParams.seed = self.parameters["enc"]["value"]["seed"]

        self.encValue = RDSE(scalarEncoderParams)
        encodingWidth = (self.encTimestamp.size + self.encValue.size)
        self.enc_info = Metrics([encodingWidth], 999999999)

        # Make the HTM.  SpatialPooler & TemporalMemory & associated tools.
        # SpatialPooler
        spParams = self.parameters["sp"]
        self.sp = SpatialPooler(
            inputDimensions=(encodingWidth,),
            columnDimensions=(spParams["columnDimensions"],),
            potentialRadius=encodingWidth,
            potentialPct=spParams["potentialPct"],
            globalInhibition=spParams["globalInhibition"],
            localAreaDensity=spParams["localAreaDensity"],
            numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
            stimulusThreshold=spParams["stimulusThreshold"],
            synPermInactiveDec=spParams["synPermInactiveDec"],
            synPermActiveInc=spParams["synPermActiveInc"],
            synPermConnected=spParams["synPermConnected"],
            boostStrength=spParams["boostStrength"],
            wrapAround=spParams["wrapAround"],
            minPctOverlapDutyCycle=spParams["minPctOverlapDutyCycle"],
            dutyCyclePeriod=spParams["dutyCyclePeriod"],
            seed=spParams["seed"],
        )
        self.sp_info = Metrics(self.sp.getColumnDimensions(), 999999999)

        # TemporalMemory
        tmParams = self.parameters["tm"]
        self.tm = TemporalMemory(
            columnDimensions=(spParams["columnDimensions"],),
            cellsPerColumn=tmParams["cellsPerColumn"],
            activationThreshold=tmParams["activationThreshold"],
            initialPermanence=tmParams["initialPermanence"],
            connectedPermanence=tmParams["connectedPermanence"],
            minThreshold=tmParams["minThreshold"],
            maxNewSynapseCount=tmParams["maxNewSynapseCount"],
            permanenceIncrement=tmParams["permanenceIncrement"],
            permanenceDecrement=tmParams["permanenceDecrement"],
            predictedSegmentDecrement=tmParams["predictedSegmentDecrement"],
            maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
            maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
            seed=tmParams["seed"]
        )
        self.tm_info = Metrics([self.tm.numberOfCells()], 999999999)

        anParams = self.parameters["anomaly"]["likelihood"]
        self.learningPeriod = int(math.floor(self.probationaryPeriod / 2.0))
        self.anomalyLikelihood = AnomalyLikelihood(
            learningPeriod=self.learningPeriod,
            estimationSamples=self.probationaryPeriod - self.learningPeriod,
            reestimationPeriod=anParams["reestimationPeriod"])

        self.kernel = self._gauss_kernel(self.historic_raw_anomaly_scores.maxlen,
                                         self.historic_raw_anomaly_scores.maxlen)
Пример #8
0
  def initialize(self):
    # toggle parameters here
    if self.use_optimization:
      parameters = get_params('params.json')
    else:
      parameters = parameters_numenta_comparable

    # setup spatial anomaly
    if self.useSpatialAnomaly:
      # Keep track of value range for spatial anomaly detection
      self.minVal = None
      self.maxVal = None

    ## setup Enc, SP, TM, Likelihood
    # Make the Encoders.  These will convert input data into binary representations.
    self.encTimestamp = DateEncoder(timeOfDay= parameters["enc"]["time"]["timeOfDay"],
                                    weekend  = parameters["enc"]["time"]["weekend"])

    scalarEncoderParams            = RDSE_Parameters()
    scalarEncoderParams.size       = parameters["enc"]["value"]["size"]
    scalarEncoderParams.sparsity   = parameters["enc"]["value"]["sparsity"]
    scalarEncoderParams.resolution = parameters["enc"]["value"]["resolution"]

    self.encValue = RDSE( scalarEncoderParams )
    encodingWidth = (self.encTimestamp.size + self.encValue.size)
    self.enc_info = Metrics( [encodingWidth], 999999999 )

    # Make the HTM.  SpatialPooler & TemporalMemory & associated tools.
    # SpatialPooler
    spParams = parameters["sp"]
    self.sp = SpatialPooler(
      inputDimensions            = (encodingWidth,),
      columnDimensions           = (spParams["columnCount"],),
      potentialPct               = spParams["potentialPct"],
      potentialRadius            = encodingWidth,
      globalInhibition           = True,
      localAreaDensity           = spParams["localAreaDensity"],
      synPermInactiveDec         = spParams["synPermInactiveDec"],
      synPermActiveInc           = spParams["synPermActiveInc"],
      synPermConnected           = spParams["synPermConnected"],
      boostStrength              = spParams["boostStrength"],
      wrapAround                 = True
    )
    self.sp_info = Metrics( self.sp.getColumnDimensions(), 999999999 )

    # TemporalMemory
    tmParams = parameters["tm"]
    self.tm = TemporalMemory(
      columnDimensions          = (spParams["columnCount"],),
      cellsPerColumn            = tmParams["cellsPerColumn"],
      activationThreshold       = tmParams["activationThreshold"],
      initialPermanence         = tmParams["initialPerm"],
      connectedPermanence       = spParams["synPermConnected"],
      minThreshold              = tmParams["minThreshold"],
      maxNewSynapseCount        = tmParams["newSynapseCount"],
      permanenceIncrement       = tmParams["permanenceInc"],
      permanenceDecrement       = tmParams["permanenceDec"],
      predictedSegmentDecrement = 0.0,
      maxSegmentsPerCell        = tmParams["maxSegmentsPerCell"],
      maxSynapsesPerSegment     = tmParams["maxSynapsesPerSegment"]
    )
    self.tm_info = Metrics( [self.tm.numberOfCells()], 999999999 )

    # setup likelihood, these settings are used in NAB
    if self.useLikelihood:
      anParams = parameters["anomaly"]["likelihood"]
      learningPeriod     = int(math.floor(self.probationaryPeriod / 2.0))
      self.anomalyLikelihood = AnomalyLikelihood(
                                 learningPeriod= learningPeriod,
                                 estimationSamples= self.probationaryPeriod - learningPeriod,
                                 reestimationPeriod= anParams["reestimationPeriod"])
    # Predictor
    # self.predictor = Predictor( steps=[1, 5], alpha=parameters["predictor"]['sdrc_alpha'] )
    # predictor_resolution = 1

    # initialize pandaBaker
    if PANDA_VIS_BAKE_DATA:
      self.BuildPandaSystem(self.sp, self.tm, parameters["enc"]["value"]["size"], self.encTimestamp.size)
Пример #9
0
def main(parameters=default_parameters, argv=None, verbose=True):
  if verbose:
    import pprint
    print("Parameters:")
    pprint.pprint(parameters, indent=4)
    print("")

  # Read the input file.
  records = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = next(reader)
    next(reader)
    next(reader)
    for record in reader:
      records.append(record)

  # Make the Encoders.  These will convert input data into binary representations.
  dateEncoder = DateEncoder(timeOfDay= parameters["enc"]["time"]["timeOfDay"], 
                            weekend  = parameters["enc"]["time"]["weekend"]) 
  
  scalarEncoderParams            = RDSE_Parameters()
  scalarEncoderParams.size       = parameters["enc"]["value"]["size"]
  scalarEncoderParams.sparsity   = parameters["enc"]["value"]["sparsity"]
  scalarEncoderParams.resolution = parameters["enc"]["value"]["resolution"]
  scalarEncoder = RDSE( scalarEncoderParams )
  encodingWidth = (dateEncoder.size + scalarEncoder.size)
  enc_info = Metrics( [encodingWidth], 999999999 )

  # Make the HTM.  SpatialPooler & TemporalMemory & associated tools.
  spParams = parameters["sp"]
  sp = SpatialPooler(
    inputDimensions            = (encodingWidth,),
    columnDimensions           = (spParams["columnCount"],),
    potentialPct               = spParams["potentialPct"],
    potentialRadius            = encodingWidth,
    globalInhibition           = True,
    localAreaDensity           = spParams["localAreaDensity"],
    synPermInactiveDec         = spParams["synPermInactiveDec"],
    synPermActiveInc           = spParams["synPermActiveInc"],
    synPermConnected           = spParams["synPermConnected"],
    boostStrength              = spParams["boostStrength"],
    wrapAround                 = True
  )
  sp_info = Metrics( sp.getColumnDimensions(), 999999999 )

  tmParams = parameters["tm"]
  tm = TemporalMemory(
    columnDimensions          = (spParams["columnCount"],),
    cellsPerColumn            = tmParams["cellsPerColumn"],
    activationThreshold       = tmParams["activationThreshold"],
    initialPermanence         = tmParams["initialPerm"],
    connectedPermanence       = spParams["synPermConnected"],
    minThreshold              = tmParams["minThreshold"],
    maxNewSynapseCount        = tmParams["newSynapseCount"],
    permanenceIncrement       = tmParams["permanenceInc"],
    permanenceDecrement       = tmParams["permanenceDec"],
    predictedSegmentDecrement = 0.0,
    maxSegmentsPerCell        = tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment     = tmParams["maxSynapsesPerSegment"]
  )
  tm_info = Metrics( [tm.numberOfCells()], 999999999 )

  # setup likelihood, these settings are used in NAB
  anParams = parameters["anomaly"]["likelihood"]
  probationaryPeriod = int(math.floor(float(anParams["probationaryPct"])*len(records)))
  learningPeriod     = int(math.floor(probationaryPeriod / 2.0))
  anomaly_history = AnomalyLikelihood(learningPeriod= learningPeriod,
                                      estimationSamples= probationaryPeriod - learningPeriod,
                                      reestimationPeriod= anParams["reestimationPeriod"])

  predictor = Predictor( steps=[1, 5], alpha=parameters["predictor"]['sdrc_alpha'] )
  predictor_resolution = 1

  # Iterate through every datum in the dataset, record the inputs & outputs.
  inputs      = []
  anomaly     = []
  anomalyProb = []
  predictions = {1: [], 5: []}
  for count, record in enumerate(records):

    # Convert date string into Python date object.
    dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
    # Convert data value string into float.
    consumption = float(record[1])
    inputs.append( consumption )

    # Call the encoders to create bit representations for each value.  These are SDR objects.
    dateBits        = dateEncoder.encode(dateString)
    consumptionBits = scalarEncoder.encode(consumption)

    # Concatenate all these encodings into one large encoding for Spatial Pooling.
    encoding = SDR( encodingWidth ).concatenate([consumptionBits, dateBits])
    enc_info.addData( encoding )

    # Create an SDR to represent active columns, This will be populated by the
    # compute method below. It must have the same dimensions as the Spatial Pooler.
    activeColumns = SDR( sp.getColumnDimensions() )

    # Execute Spatial Pooling algorithm over input space.
    sp.compute(encoding, True, activeColumns)
    sp_info.addData( activeColumns )

    # Execute Temporal Memory algorithm over active mini-columns.
    tm.compute(activeColumns, learn=True)
    tm_info.addData( tm.getActiveCells().flatten() )

    # Predict what will happen, and then train the predictor based on what just happened.
    pdf = predictor.infer( count, tm.getActiveCells() )
    for n in (1, 5):
      if pdf[n]:
        predictions[n].append( np.argmax( pdf[n] ) * predictor_resolution )
      else:
        predictions[n].append(float('nan'))
    predictor.learn( count, tm.getActiveCells(), int(consumption / predictor_resolution))

    anomalyLikelihood = anomaly_history.anomalyProbability( consumption, tm.anomaly )
    anomaly.append( tm.anomaly )
    anomalyProb.append( anomalyLikelihood )

  # Print information & statistics about the state of the HTM.
  print("Encoded Input", enc_info)
  print("")
  print("Spatial Pooler Mini-Columns", sp_info)
  print(str(sp))
  print("")
  print("Temporal Memory Cells", tm_info)
  print(str(tm))
  print("")

  # Shift the predictions so that they are aligned with the input they predict.
  for n_steps, pred_list in predictions.items():
    for x in range(n_steps):
        pred_list.insert(0, float('nan'))
        pred_list.pop()

  # Calculate the predictive accuracy, Root-Mean-Squared
  accuracy         = {1: 0, 5: 0}
  accuracy_samples = {1: 0, 5: 0}
  for idx, inp in enumerate(inputs):
    for n in predictions: # For each [N]umber of time steps ahead which was predicted.
      val = predictions[n][ idx ]
      if not math.isnan(val):
        accuracy[n] += (inp - val) ** 2
        accuracy_samples[n] += 1
  for n in sorted(predictions):
    accuracy[n] = (accuracy[n] / accuracy_samples[n]) ** .5
    print("Predictive Error (RMS)", n, "steps ahead:", accuracy[n])

  # Show info about the anomaly (mean & std)
  print("Anomaly Mean", np.mean(anomaly))
  print("Anomaly Std ", np.std(anomaly))

  # Plot the Predictions and Anomalies.
  if verbose:
    try:
      import matplotlib.pyplot as plt
    except:
      print("WARNING: failed to import matplotlib, plots cannot be shown.")
      return -accuracy[5]

    plt.subplot(2,1,1)
    plt.title("Predictions")
    plt.xlabel("Time")
    plt.ylabel("Power Consumption")
    plt.plot(np.arange(len(inputs)), inputs, 'red',
             np.arange(len(inputs)), predictions[1], 'blue',
             np.arange(len(inputs)), predictions[5], 'green',)
    plt.legend(labels=('Input', '1 Step Prediction, Shifted 1 step', '5 Step Prediction, Shifted 5 steps'))

    plt.subplot(2,1,2)
    plt.title("Anomaly Score")
    plt.xlabel("Time")
    plt.ylabel("Power Consumption")
    inputs = np.array(inputs) / max(inputs)
    plt.plot(np.arange(len(inputs)), inputs, 'red',
             np.arange(len(inputs)), anomaly, 'blue',)
    plt.legend(labels=('Input', 'Anomaly Score'))
    plt.show()

  return -accuracy[5]
import warnings

from htm.bindings.sdr import SDR, Metrics
from htm.encoders.rdse import RDSE, RDSE_Parameters
from htm.encoders.date import DateEncoder
from htm.bindings.algorithms import SpatialPooler
from htm.bindings.algorithms import TemporalMemory
from htm.algorithms.anomaly_likelihood import AnomalyLikelihood
from htm.bindings.algorithms import Predictor

import matplotlib
import matplotlib.pyplot as plt

dateEncoder = DateEncoder(timeOfDay=(30, 1), weekend=21)

scalarEncoderParams = RDSE_Parameters()
scalarEncoderParams.size = 700
scalarEncoderParams.sparsity = 0.02
scalarEncoderParams.resolution = 0.88
scalarEncoder = RDSE(scalarEncoderParams)
encodingWidth = (dateEncoder.size + scalarEncoder.size)

sp = SpatialPooler(inputDimensions=(encodingWidth, ),
                   columnDimensions=(1638, ),
                   potentialPct=0.85,
                   potentialRadius=encodingWidth,
                   globalInhibition=True,
                   localAreaDensity=0.04395604395604396,
                   synPermInactiveDec=0.006,
                   synPermActiveInc=0.04,
                   synPermConnected=0.13999999999999999,
Пример #11
0
    def initialize(self):
        # toggle parameters here
        # parameters = default_parameters
        parameters = parameters_numenta_comparable

        ## setup Enc, SP, TM, Likelihood
        # Make the Encoders.  These will convert input data into binary representations.
        self.encTimestamp = DateEncoder(
            timeOfDay=parameters["enc"]["time"]["timeOfDay"],
            weekend=parameters["enc"]["time"]["weekend"],
            season=parameters["enc"]["time"]["season"],
            dayOfWeek=parameters["enc"]["time"]["dayOfWeek"])

        scalarEncoderParams = EncParameters()
        scalarEncoderParams.size = parameters["enc"]["value"]["size"]
        scalarEncoderParams.sparsity = parameters["enc"]["value"]["sparsity"]
        scalarEncoderParams.resolution = parameters["enc"]["value"][
            "resolution"]

        self.encValue = Encoder(scalarEncoderParams)
        encodingWidth = (self.encTimestamp.size + self.encValue.size)
        self.enc_info = Metrics([encodingWidth], 999999999)

        # Make the HTM.  SpatialPooler & TemporalMemory & associated tools.
        # SpatialPooler
        spParams = parameters["sp"]
        self.sp = SpatialPooler(
            inputDimensions=(encodingWidth, ),
            columnDimensions=(spParams["columnCount"], ),
            potentialPct=spParams["potentialPct"],
            potentialRadius=spParams["potentialRadius"],
            globalInhibition=True,
            localAreaDensity=spParams["localAreaDensity"],
            stimulusThreshold=spParams["stimulusThreshold"],
            synPermInactiveDec=spParams["synPermInactiveDec"],
            synPermActiveInc=spParams["synPermActiveInc"],
            synPermConnected=spParams["synPermConnected"],
            boostStrength=spParams["boostStrength"],
            wrapAround=True)
        self.sp_info = Metrics(self.sp.getColumnDimensions(), 999999999)

        # TemporalMemory
        tmParams = parameters["tm"]
        self.tm = TemporalMemory(
            columnDimensions=(spParams["columnCount"], ),
            cellsPerColumn=tmParams["cellsPerColumn"],
            activationThreshold=tmParams["activationThreshold"],
            initialPermanence=tmParams["initialPerm"],
            connectedPermanence=spParams["synPermConnected"],
            minThreshold=tmParams["minThreshold"],
            maxNewSynapseCount=tmParams["newSynapseCount"],
            permanenceIncrement=tmParams["permanenceInc"],
            permanenceDecrement=tmParams["permanenceDec"],
            predictedSegmentDecrement=0.0,
            maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
            maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"])
        self.tm_info = Metrics([self.tm.numberOfCells()], 999999999)

        # setup likelihood, these settings are used in NAB
        if self.useLikelihood:
            anParams = parameters["anomaly"]["likelihood"]
            learningPeriod = int(math.floor(self.probationaryPeriod / 2.0))
            self.anomalyLikelihood = AnomalyLikelihood(
                learningPeriod=learningPeriod,
                estimationSamples=self.probationaryPeriod - learningPeriod,
                reestimationPeriod=anParams["reestimationPeriod"])