Пример #1
0
    def __init__(self, modules_file, experiment_name, max_module_size=6):

        self.modules_file = modules_file
        self.experiment_name = experiment_name
        self.max_module_size = max_module_size
        util._mkdir("../log")
        self.logfile = open(
            "../log/pathologic_" + self.experiment_name + ".log", "w")

        util._mkdir("../results")
        util._mkdir("../results/pathologic_" + self.experiment_name)
        self.html_writer = HtmlWriter("../results/pathologic_" +
                                      self.experiment_name + ".html")
        self.html_writer.write(
            "<h1>List of optimal and non-optimal pathways</h1>\n")
        self.html_writer.write("<ul>\n")
        self.line_counter = 0
        self.pathfinder = None
Пример #2
0
    def __init__(self, modules_file, experiment_name, max_module_size=6):

        self.modules_file = modules_file
        self.experiment_name = experiment_name
        self.max_module_size = max_module_size
        util._mkdir("../log")
        self.logfile = open("../log/pathologic_" + self.experiment_name + ".log", "w")
        
        util._mkdir("../results")
        util._mkdir("../results/pathologic_" + self.experiment_name)
        self.html_writer = HtmlWriter("../results/pathologic_" + self.experiment_name + ".html")
        self.html_writer.write("<h1>List of optimal and non-optimal pathways</h1>\n")
        self.html_writer.write("<ul>\n")
        self.line_counter = 0
        self.pathfinder = None
Пример #3
0
def main():
    main_html = HtmlWriter('res/fba.html')
    main_html.write('<h1>Flux Balance Analysis</h1>\n')

    carbon_sources = {}
    BM_lower_bound = 0.01
    ko_reactions = ''
    ki_reactions = ''
    PPP_reaction = ''

    # full model carbon sources: glc, fru, xyl__D, succ, ac, rib__D, pyr

    #########################################
    # Core model for testing glycolysis KOs #
    #########################################
    #model = init_wt_model('core', {'ac' : -10}); ko_reactions = 'PGM'; ki_reactions = 'RED';
    #model = init_wt_model('core', {'glc' : -10}); ko_reactions = 'PFK'; ki_reactions = 'RED';

    #######################################
    # Full model Rubisco optimization KOs #
    #######################################
    #model = init_wt_model('full', {'ac' : -10}); ko_reactions = 'PGM,TRSARr,HPYRRx,HPYRRy'; ki_reactions = 'RED';
    #model = init_wt_model('full', {'rib_D' : -10}); ko_reactions = 'TKT1'; ki_reactions = 'RBC,PRK'; PPP_reaction = 'RBC';
    model = init_wt_model('full', {'xyl_D': -10})
    ko_reactions = 'RPI'
    ki_reactions = 'RBC,PRK'
    PPP_reaction = 'RBC'
    #model = init_wt_model('full', {'xyl_D' : -10}); ko_reactions = 'G6PDH2r,PFK,F6PA,FRUK,PFK_3,DRPA'; ki_reactions = 'RBC,PRK';
    #model = init_wt_model('full', {'fru' : -10, 'rib_D' : -10}); ko_reactions = 'G6PDH2r,PFK,F6PA,FRUK,PFK_3,DRPA,TKT1,TKT2'; ki_reactions = 'PKT';

    ###############################
    # Shikimate generating strain #
    ###############################
    #model = init_wt_model('full', {'fru' : -10});
    #ko_reactions = 'G6PDH2r,TALA'; ki_reactions = 'EX_3dhsk_c'; PPP_reaction = 'EX_3dhsk_c';
    #ko_reactions = 'G6PDH2r,PFK,F6PA,FRUK,PFK_3,DRPA'; ki_reactions = 'PKT'; PPP_reaction = 'PKT';

    ##########################################################
    # Testing no growth when electrons are provided directly #
    ##########################################################
    #model = init_wt_model('full', {}); ki_reactions = 'RED';
    #ko_reactions = "POR5,MCITL2";
    #ko_reactions = "POR5,FTHFLi,GART,RPI";

    models = {'WT': model}

    if ko_reactions:
        for k in models.keys():
            m = deepcopy(models[k])
            knockout_reactions(m, ko_reactions)
            models[k + ' -%s' % ko_reactions] = m

    if ki_reactions:
        for k in models.keys():
            m = deepcopy(models[k])
            knockin_reactions(m, ki_reactions)
            models[k + ' +%s' % ki_reactions] = m

    # Run the optimization for the objective reaction and medium composition
    # set in the file.
    main_html.write('<table border="1">\n')
    main_html.write(
        '<tr><td><b>Model Name</b></td><td><b>Growth Yield</b></td></tr>\n')
    growths = {}
    for name, model in sorted(models.iteritems()):
        print "solving %50s model" % name,
        ok = OptKnock(model)
        ok.prepare_FBA_primal()
        ok.solve()
        growths[name] = ok.get_objective_value()

        if growths[name] is None:
            main_html.write('<tr><td>%s</td><td>infeasible</td></tr>\n' % name)
        else:
            print ': f = %.3g' % growths[name]
            main_html.write('<tr><td>')
            html = main_html.branch(name)
            main_html.write('</td><td>%.3g</td></tr>\n' % growths[name])
            html.write('<h1>Model name: %s</h1>\n' % name)
            html.write('<h2>Growth Yield: %.3g</h2>\n' % growths[name])
            ok.draw_svg(html)
            ok.model_summary(html)
    main_html.write('</table>\n')

    if PPP_reaction:
        print 'Calculating Phenotypic Phase Plane for phosphoketolase ...'
        fig, ax = plt.subplots(1, figsize=(6, 6))
        plot_multi_PPP(models, PPP_reaction, ax)
        ax.set_title('Phenotypic Phase Plane')
        main_html.embed_matplotlib_figure(fig, width=400, height=400)
Пример #4
0
def main():
    Pentose_target_compounds = [
        'D-Xylulose-5P', 'D-Ribulose-5P', 'D-Ribose-5P'
    ]

    PP_compounds = \
        ['D-Xylulose-5P',\
         'D-Ribulose-5P',\
         'D-Ribose-5P',\
         'D-Erythrose-4P',\
         'D-Sedoheptulose-7P',\
         'D-Fructose-6P',\
         'D-Glyceraldehyde-3P']

    Glycolysis_compounds = \
        ['Dihydroxyacetone-3P',\
         'D-Glyceraldehyde-3P',\
         'Bisphosphoglycerate',\
         '3-Phosphoglycerate',\
         '2-Phosphoglycerate',\
         'Phosphoenolpyruvate',\
         'Pyruvate']

    TCA_compounds = \
        ['Oxaloacetate',\
         'Citrate',\
         'cis-Aconitate',\
         'D-Isocitrate',\
         '2-Ketoglutarate',\
         #succinyl-CoA\
         'Succinate',\
         'Fumarate',\
         'Malate',\
         ]

    Biosynthese_compounds = PP_compounds + Glycolysis_compounds + TCA_compounds

    pathway_list = []
    # fast test
    pathway_list.append(
        ("TEST", ['2-Phosphoglycerate'], ['Bisphosphoglycerate'], None))

    # Optimality Modules:
    pathway_list.append(
        ("Glucose to Fructose", ['D-glucose-6P'], ['D-fructose-6P'], None))
    pathway_list.append(
        ("Fructose to Glucose", ['D-fructose-6P'], ['D-glucose-6P'], None))

    pathway_list.append(("oxaloacetate+acetyl-CoA to citrate",
                         ['oxaloacetate + acetyl-CoA'], ['citrate'], None))
    pathway_list.append(
        ("cis-aconitate to succinate", ['cis-aconitate'], ['succinate'], None))
    pathway_list.append(
        ("D-xylose to D-xylulose-5P", ['D-Xylose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("D-arabitol to D-xylulose-5P", ['D-Arabitol'],
                         ['D-Xylulose-5P'], None))
    pathway_list.append(("L-arabinose to D-xylulose-5P", ['L-Arabinose'],
                         ['D-Xylulose-5P'], None))
    pathway_list.append(("L-xylulose to D-xylulose-5P", ['L-Xylulose'],
                         ['D-Xylulose-5P'], None))
    pathway_list.append(
        ("ribitol to D-xylulose-5P", ['Ribitol'], ['D-Xylulose-5P'], None))
    pathway_list.append(
        ("D-ribose to D-xylulose-5P", ['D-Ribose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("Oxaloacetate to 2-Ketoglutarate", ['Oxaloacetate'],
                         ['2-Ketoglutarate'], None))
    pathway_list.append(
        ("Citrate to 2-Ketoglutarate", ['Citrate'], ['2-Ketoglutarate'], None))

    pathway_list.append(
        ("Pentose Phosphate", ['D-Xylulose-5P + D-Xylulose-5P + D-Ribose-5P'],
         ['D-Fructose-6P + D-Fructose-6P + D-Glyceraldehyde-3P'], None))
    #pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Ribose-5P'], ['D-Glyceraldehyde-3P + D-Sedoheptulose-7P'], None))
    pathway_list.append(
        ("D-glucose to D-ribulose-5P", ['D-Glucose'], ['D-Ribulose-5P'], None))
    pathway_list.append(("D-glucose to D-fructose-16P", ['D-Glucose'],
                         ['D-Fructose-16P'], None))
    pathway_list.append(("D-fructose-6P to GAP+DHAP", ['D-Fructose-6P'],
                         ['D-Glyceraldehyde-3P + Dihydroxyacetone-3P'], None))
    pathway_list.append(
        ("GAP to 3-PG", ['D-Glyceraldehyde-3P'], ['3-Phosphoglycerate'], None))
    pathway_list.append(
        ("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], None))
    pathway_list.append(
        ("BPG to 3-PG", ['Bisphosphoglycerate'], ['3-Phosphoglycerate'], None))
    pathway_list.append(
        ("BPG to 2-PG", ['Bisphosphoglycerate'], ['2-Phosphoglycerate'], None))
    pathway_list.append(
        ("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], None))
    pathway_list.append(
        ("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], None))

    # Biosynthesis
    pathway_list.append(
        ("3-PG to L-Serine", ['3-Phosphoglycerate'], ['L-Serine'], None))
    pathway_list.append(
        ("L-Serine to Glycine", ['L-Serine'], ['Glycine'], None))
    pathway_list.append(
        ("Pyruvate to L-Alanine", ['Pyruvate'], ['L-Alanine'], None))

    pathway_list.append(
        ("Synthesis of L-Serine", Biosynthese_compounds, ['L-Serine'], None))
    pathway_list.append(
        ("Synthesis of L-Alanine", Biosynthese_compounds, ['L-Alanine'], None))
    pathway_list.append(
        ("Synthesis of Glycine", Biosynthese_compounds, ['Glycine'], None))
    pathway_list.append(("Synthesis of L-Aspartate", Biosynthese_compounds,
                         ['L-Aspartate'], None))
    pathway_list.append(("Synthesis of L-Glutamate", Biosynthese_compounds,
                         ['L-Glutamate'], None))

    # Pentose utilization
    pathway_list.append(("L-Arabinose to Pentose Phosphate", ['L-Arabinose'],
                         Pentose_target_compounds, None))
    pathway_list.append(("D-Xylose to Pentose Phosphate", ['D-Xylose'],
                         Pentose_target_compounds, None))
    pathway_list.append(("D-Ribose to Pentose Phosphate", ['D-Ribose'],
                         Pentose_target_compounds, None))
    pathway_list.append(("Ribitol to Pentose Phosphate", ['Ribitol'],
                         Pentose_target_compounds, None))
    pathway_list.append(("D-Arabitol to Pentose Phosphate", ['D-Arabitol'],
                         Pentose_target_compounds, None))

    # Glycolysis
    pathway_list.append(
        ("GAP to PYR", ['D-Glyceraldehyde-3P'], ['Pyruvate'], 'PP'))
    pathway_list.append(("GAP to DHAP", ['D-Glyceraldehyde-3P'],
                         ['Dihydroxyacetone-3P'], 'PP'))
    pathway_list.append(("GAP to PEP", ['D-Glyceraldehyde-3P + H2O'],
                         ['Phosphoenolpyruvate + H2O'], 'PP'))
    pathway_list.append(
        ("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC to GAP", ['D-Glucose'],
                         ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(
        ("GLC to PYR", ['Glucose'], ['Pyruvate + Pyruvate'], 'PP'))
    pathway_list.append(("GLC-36P to GAP", ['D-Glucose-36P'],
                         ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to GAP", ['D-Glucose-6P'],
                         ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to BPG", ['D-Glucose-6P'],
                         ['Bisphosphoglycerate + Bisphosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 3-PG", ['D-Glucose-6P'],
                         ['3-Phosphoglycerate + 3-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 2-PG", ['D-Glucose-6P'],
                         ['2-Phosphoglycerate + 2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to PEP", ['D-Glucose-6P'],
                         ['Phosphoenolpyruvate + Phosphoenolpyruvate'], 'PP'))
    pathway_list.append(
        ("2-PG to PYR", ['2-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(
        ("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(
        ("BPG to PYR", ['Bisphosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(
        ("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], 'PP'))

    # Arren's project
    pathway_list.append(
        ("Glyoxylate + GAP to Pentose", ['Glyoxylate + D-Glyceraldehyde-3P'],
         Pentose_target_compounds, None))
    pathway_list.append(
        ("Glyoxylate + PYR to Pentose", ['Glyoxylate + Pyruvate'],
         Pentose_target_compounds, None))
    pathway_list.append(
        ("Glycolate + GAP to Pentose", ['Glycolate + D-Glyceraldehyde-3P'],
         Pentose_target_compounds, None))
    pathway_list.append(
        ("Glycolate + PYR to Pentose", ['Glycolate + Pyruvate'],
         Pentose_target_compounds, None))

    pathway_names = [pathway[0] for pathway in pathway_list]
    pathway_map = {}
    for pathway in pathway_list:
        pathway_map[pathway[0]] = pathway[1:]

    if (len(sys.argv) > 1):
        pathway_name = pathway_names[int(sys.argv[1]) - 1]
    else:
        pathway_name = TkListSelection(pathway_names, "Choose a pathway:")
        if (pathway_name == None):
            sys.exit(0)

    (substrates, products, pruning_method) = pathway_map[pathway_name]
    pathfinder = PathFinder(carbon_only=False,
                            pruning_method=pruning_method,
                            ignore_chirality=True)

    print "-" * 80 + "\nChosen pathway name is %s\n" % pathway_name + "-" * 80

    util._mkdir("../results")
    util._mkdir("../results/" + pathway_name)
    html_writer = HtmlWriter("../results/" + pathway_name + ".html")
    html_writer.write("<h1><center>%s</center></h1>\n" % pathway_name)
    html_writer.write("<ul>\n")
    for i in range(len(substrates)):
        for j in range(len(products)):
            ##(subs, prod) = pathfinder.balance_reaction(substrates[i], products[j])
            (subs, prod) = (substrates[i], products[j])
            pathway_prefix = "pathway_%d_%d" % (i, j)
            util._mkdir("../results/" + pathway_name + "/" + pathway_prefix)
            pathfinder.solve_pathway(subs,
                                     prod,
                                     html_writer,
                                     pathway_name,
                                     pathway_prefix,
                                     max_levels=6,
                                     stop_after_first_solution=True)
            html_writer.flush()
    html_writer.write("</ul>\n")
    html_writer.display()

    return
Пример #5
0
 def make_welcome_page(self, mailaddr, filename):
     db = Database()
     try:
         prob = db.get_properties('maildata')
         user_name = prob[mailaddr]
         writer = HtmlWriter(open(filename, mode='w'))
         writer.title('Welcome to ' + user_name + 'is page!')
         writer.paragraph(user_name + 'のページへようこそ。')
         writer.paragraph('メール待っていますね。')
         writer.mailto(mailaddr, user_name)
         writer.close()
         print(filename + ' ' + 'is created for' + mailaddr + ' ' + '(' +
               user_name + ')')
     except IOError as e:
         logging.exception(e)
Пример #6
0
    def make_welcome_page(mailaddr, filename):
        # try:
            # username = '******'
            # mailaddr = 'mailaddr'
            mailprop = Database.get_properties('maildata')
            # print mailprop
            username = mailprop.get('user', mailaddr)

            myfile = open(filename, 'w')
            writer = HtmlWriter(myfile)
            writer.title('Welcom to ' + username + ' s page!')
            writer.paragraph(username + 'のページへようこそ。')
            writer.paragraph('メールまっていますね。')
            writer.mailto(mailaddr, username)
            writer.closing()

            print filename + ' is created for ' + mailaddr + ' (' + username + ')'
Пример #7
0
#!/usr/bin/python

import sys
import os
import util
from chemconvert import hash2graph
from html_writer import HtmlWriter
from svg import Scene

html = HtmlWriter("../results/hash_list.html")
util._mkdir("../results/hash_list")

for line in util.parse_text_file(sys.argv[1]):
	print line
	graph = hash2graph(line)
	graph.initialize_pos()
	scene = graph.svg(Scene(200, 200, font_size=12))    
	html.write_svg(scene, "../results/hash_list/" + line)

html.display()
def write_recipients_page(html_dir,
                          recipients_filename,
                          funder1,
                          funder2,
                          recipients):
    html_fp = open(os.path.join(html_dir,recipients_filename), 'w')
    html_writer = HtmlWriter(html_fp)
    html_writer.open_tag('html')
    html_writer.open_tag('head')
    html_writer.empty_tag('link', {'href': 'style.css', 
                                   'rel':'stylesheet'})
    html_writer.empty_tag('link', {'href': 'overlap.css', 
                                   'rel':'stylesheet'})
    html_writer.close_tag('head')
    html_writer.open_tag('body')
    html_writer.open_tag('div', {'class': 'container'})
    html_writer.write_html('h1',
                           'Recipients common to {0} and {1}'.format(funder1,
                                                                     funder2))
    html_writer.open_tag('ul')

    for recipient in recipients:
        html_writer.write_html('li', recipient)

    html_writer.close_tag('ul')

    html_writer.close_tag('div')

    html_writer.close_tag('body')
    html_writer.close_tag('html')

    html_fp.close()
Пример #9
0
class Pathologic:
    def __init__(self, modules_file, experiment_name, max_module_size=6):

        self.modules_file = modules_file
        self.experiment_name = experiment_name
        self.max_module_size = max_module_size
        util._mkdir("../log")
        self.logfile = open("../log/pathologic_" + self.experiment_name + ".log", "w")
        
        util._mkdir("../results")
        util._mkdir("../results/pathologic_" + self.experiment_name)
        self.html_writer = HtmlWriter("../results/pathologic_" + self.experiment_name + ".html")
        self.html_writer.write("<h1>List of optimal and non-optimal pathways</h1>\n")
        self.html_writer.write("<ul>\n")
        self.line_counter = 0
        self.pathfinder = None
    
    def find_shortest_pathways(self, substrate, product, max_levels, stop_after_first_solution=True):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_shortest_pathway([G_subs], [G_prod], max_levels=max_levels, stop_after_first_solution=stop_after_first_solution)
    
    def get_distance(self, substrate, product, max_levels):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_distance([G_subs], [G_prod], max_levels=max_levels)
    
    def get_all_pathways(self, substrate, product, max_levels):
        """return all existing pathways with a length <= max_distance.
        """
        (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways(substrate, product, max_levels=max_levels, stop_after_first_solution=False)
        if (possible_pathways == []):
            return []
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(original_compound_map, possible_pathways)
            return [scene for (cost, scene) in scene_list] # strip off the cost of each pathway
    
    def get_shortest_pathways(self, substrate, product, max_levels):
        """return -1 if the is no path with length <= max_levels.
           otherwise a pair containing a list of all pathways with the minimal length and the minimal length itself
        """
        (original_compound_map, possible_pathways, min_length) = self.find_shortest_pathways(substrate, product, max_levels=max_levels, stop_after_first_solution=True)
        if (possible_pathways == []):
            return ([], -1)
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(original_compound_map, possible_pathways)
            return ([scene for (cost, scene) in scene_list], min_length) # strip off the cost of each pathway
    
    def verify_pathway(self, pathway):
        sys.stdout.write("Verifying pathway: %s\n" % str(pathway))
        for i in range(len(pathway)-1):
            sys.stdout.write(" - checking '%s' -> '%s' ... " % tuple(pathway[i:i+2]))
            sys.stdout.flush()
            distance = self.get_distance(pathway[i], pathway[i+1], 1)
            if (distance == -1):
                sys.stdout.write("FAILED (not neighbors)\n")
            else:
                sys.stdout.write("OK\n")
            sys.stdout.flush()
    
    def is_optimal(self, pathway, i, j, draw_scenes=False):
        sys.stdout.write(str(pathway[i:j+1]) + " ... ")
    
        wt_distance = j - i
        if (wt_distance <= 1): # we have verified that this is optimal already
            return True
        
        if (draw_scenes):
            # try to find at least one path which is shorter than the wild-type path:
            (scenes, dist) = self.get_shortest_pathways(pathway[i], pathway[j], wt_distance - 1)
        else:
            dist = self.get_distance(pathway[i], pathway[j], wt_distance - 1)
        
        if (dist == -1): # which means no shorter path has been found, hence the WT pathway is one of the shortest
            sys.stdout.write(" is optimal!\n")
            self.html_writer.write("<li><span style=color:green>%s - OPTIMAL</span></li>\n" % str(pathway[i:j+1]))
            self.html_writer.flush()
            return True
        else:                  # there is a shorter path than the WT one
            sys.stdout.write(" is not optimal!\n")
            self.html_writer.write("<li>\n  <span style=color:red>%s - NOT OPTIMAL</span><br>\n  " % str(pathway[i:j+1]))
            
            if (draw_scenes):
                #for s in scenes:
                s = scenes[0] # draws only the first scene (otherwise it could be too long)
                self.html_writer.write_svg(s, "pathologic_" + self.experiment_name + "/pathway_%d_%d_%d" % (self.line_counter, i, j))
                self.html_writer.write("\n</li>\n")
                self.html_writer.flush()
            return False
    
    def find_modules(self, pathway, draw_scenes=False):
        self.verify_pathway(pathway)
        i = 0
        for j in range(2, len(pathway)):
            if (j - i >= self.max_module_size):
                sys.stdout.write(str(pathway[i:(j+1)]) + " is too long for me, chopping off the head...\n")
                i += 1
            
            # shorten the path from it's head until it is optimal (or too short, i.e. length=1)
            while ( (j - i) > 1 and (not self.is_optimal(pathway, i, j, draw_scenes=draw_scenes)) ):
                i += 1

    def analyze(self, carbon_only=True, use_antimotifs=True, draw_scenes=False):
        for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile)
            
            pathway = line.split(';')
            self.find_modules(pathway, draw_scenes=draw_scenes)
            self.line_counter += 1

    def analyze_pairs(self, carbon_only=True, use_antimotifs=True, max_distance=4):
        distances = [] # the minimal pathway length between the substrate and the product
        alternatives = [] # each value is the number of alternative pathways with the minimal distance

        line_counter = 0
        for line in util.parse_text_file("../rec/" + self.modules_file + ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=False, use_antimotifs=use_antimotifs, outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only, pruning_method=None, ignore_chirality=True, use_antimotifs=use_antimotifs, outstream=self.logfile)

            (subs, prod, max_steps) = line.split(";", 2)
            if (max_steps in ['-1','inf','']):
                sys.stdout.write(subs + " -(?)-> " + prod)
                sys.stdout.flush()
                (scenes, dist) = self.get_shortest_pathways(subs, prod, max_distance)
            else:
                dist = int(max_steps)
                sys.stdout.write(subs + " -(%d)-> " % dist + prod)
                sys.stdout.flush()
                scenes = self.get_all_pathways(subs, prod, dist)

            if (dist == -1):
                sys.stdout.write(", Distance(L) = inf, N = 0\n")
                sys.stdout.flush()
                distances.append("inf")
                alternatives.append(0)
                self.html_writer.write("<li><span style=color:red>%s <-> %s (distance > %d)</span></li>\n" % (subs, prod, self.max_module_size))
                self.html_writer.flush()
            else:
                sys.stdout.write(", Distance(L) = %d, N = %d\n" % (dist, len(scenes)))
                sys.stdout.flush()
                distances.append(dist)
                alternatives.append(len(scenes))
                self.html_writer.write("<li><span style=color:green>%s <-> %s (distance = %d)</span></li>\n" % (subs, prod, dist))
                for i in range(len(scenes)):
                    self.html_writer.write("<li>")
                    self.html_writer.write_svg(scenes[i], "pathologic_" + self.experiment_name + "/pair%d_path%d" % (line_counter,i))
                    self.html_writer.write("</li>\n")
                self.html_writer.flush()
            line_counter += 1
                    
        result_file = open("../results/" + self.experiment_name + ".txt", "w")
        result_file.write(str(distances) + "\n" + str(alternatives) + "\n")
        result_file.close()

    def display(self):
        self.html_writer.write("</ul>\n")
        self.html_writer.write(self.pathfinder.reactor.antimotif_summary())
        self.html_writer.display()

    def __del__(self):
        del self.pathfinder
        self.logfile.close()
Пример #10
0
def main(core=True):
    main_html = HtmlWriter('res/optknock.html')
    main_html.write('<title>OptKnock</title>')
    main_html.write('<h1>OptKnock</h1>\n')

    if core:
        model = init_wt_model('core', {}, BM_lower_bound=0.1)
        knockin_reactions(model, 'EDD,EDA', 0, 1000)
        set_exchange_bounds(model, 'g6p', lower_bound=-10)
        main_html.write('<ul>\n')
        main_html.write('<li>Model used: E.coli core</li>\n')
        main_html.write(
            '<li>Carbon source: glucose-6P, v <= 10 [mmol/g(DW) h]</li>\n')
        main_html.write(
            '<li>Biomass yield lower bound: v >= 0.1 [mmol/g(DW) h]</li>\n')
    else:
        model = init_wt_model('full', {'rib_D': -10}, BM_lower_bound=0.1)
        main_html.write('<ul>\n')
        main_html.write('<li>Model used: iJO1366 (E. coli full model)</li>\n')
        main_html.write(
            '<li>Carbon source: D-ribose, v <= 10 [mmol/g(DW) h]</li>\n')
        main_html.write(
            '<li>Biomass yield lower bound: v >= 0.1 [mmol/g(DW) h]</li>\n')

    knockin_reactions(model, 'PRK,RBC', 0, 1000)
    main_html.write('<li>Added reactions: phosphoribulokinase, RuBisCo</li>\n')
    optknock_reaction = 'RBC'

    #knockin_reactions(model, 'DXS', 0, 1000)
    #main_html.write('<li>Added reactions: deoxyribose synthase</li>\n')
    #optknock_reaction = 'DXS'

    main_html.write('</ul>\n')

    print "Running standard FBA..."
    ok = OptKnock(model)
    ok.prepare_FBA_primal()
    ok.prob.writeLP('res/fba_primal.lp')
    ok.solve()
    ok.print_primal_results(short=True)

    print '-' * 50

    print "Running dual FBA..."
    ok = OptKnock(model)
    ok.prepare_FBA_dual()
    ok.prob.writeLP('res/fba_dual.lp')
    ok.solve()
    ok.print_dual_results(short=True)

    print '-' * 50

    if False:
        print "Running OptSlope..."
        ok = OptKnock(model)
        ok.prepare_optslope(optknock_reaction, num_deletions=3)
        ok.write_linear_problem('res/optslope.lp')
        solution = ok.solve()
        if solution.status is not None:
            ok.print_optknock_results(short=True)
            ok_model = ok.get_optknock_model()

            #fig, ax = plt.subplots(1)
            #plot_multi_PPP([model, ok_model],
            #               ['Wild-Type', r'OptKnock'],
            #               optknock_reaction, ax)
            #ax.set_title(title)
            #fig.savefig('res/OS_PPP.pdf')

        print '-' * 50

    print "Running OptKnock for maximizing flux in %s..." % optknock_reaction
    ok = OptKnock(model)
    ok.prepare_optknock(optknock_reaction, num_deletions=1)
    ok.write_linear_problem('res/optknock.lp')
    solution = ok.solve()
    if solution.status is not None:
        ok.print_optknock_results(short=True)
        knockouts = ok.get_optknock_knockouts()
        ko_model = clone_model(model)
        knockout_reactions(ko_model, knockouts)

        main_html.write('<h2>Knockouts: %s</h2>\n' % knockouts)

        # draw the PPP as embedded SVG
        fig, ax = plt.subplots(1, figsize=(6, 6))
        wt_PPP, wt_slope = get_PPP(model, optknock_reaction)
        ax.fill_between(wt_PPP[:, 0].flat,
                        wt_PPP[:, 1].flat,
                        wt_PPP[:, 2].flat,
                        facecolor='#E0E0E0',
                        linewidth=0)

        ko_PPP, slope = get_PPP(ko_model, optknock_reaction)
        if slope is None:
            ko_text = 'Not feasible at any Rubisco flux'
            ko_color = '#FF9073'
        else:
            slope = np.round(slope, 1)
            ko_text = ('Slope = %g' % slope)
            if slope > 0:
                ko_color = '#00B64F'
            else:
                ko_color = '#FF7060'

        ax.fill_between(ko_PPP[:, 0].flat,
                        ko_PPP[:, 1].flat,
                        ko_PPP[:, 2].flat,
                        facecolor=ko_color,
                        linewidth=1)
        main_html.embed_matplotlib_figure(fig, width=400, height=400)

        # draw the flux map as embedded SVG
        ok.draw_svg(main_html)

        # write the flux summary for the knockout model as HTML
        ok.model_summary(main_html)
Пример #11
0
def options_html():
    """HTML options page.

    Shows bunch of options for conversion to HTML format. Converts to HTML
    using those options.
    """
    if session.input_data_id is None: redirect(URL(index))

    # get
    input_data = db.input_data(session.input_data_id)

    options = []
    options += [(T('Page width') + ': ', INPUT(_type='number', _name='html_page_width', _style='width: 50px', _value=_optval('html_page_width', '800')) +
                 ' ' + T('pixels'))]
    options += [(T('Image size') + ': ',
                 INPUT(_type='number', _name='html_image_width', _style='width: 50px', _value=_optval('html_image_width', '300')) +
                 ' x ' +
                 INPUT(_type='number', _name='html_image_height', _style='width: 50px', _value=_optval('html_image_height', '300')) +
                 ' ' + T('pixels'))]

    checked = _optval('html_image_upscale', '') == 'checked'
    options += [(T('Upscale images') + ': ',
               INPUT(_type='checkbox', _name='html_image_upscale', _value='checked', value=checked))]

    fmtoptions = [OPTION(T('31.12.2001'), _value='DMY.'),
                  OPTION(T('31/12/2001'), _value='DMY/'),
                  OPTION(T('2001-12-31'), _value='YMD-'),
                  OPTION(T('12/31/2012'), _value='MDY/')]
    options += [(T('Date format') + ': ', SELECT(*fmtoptions, _name='datefmt', value=_optval('datefmt', 'DMY.'), _style='width: 150px'))]

    options += [('', INPUT(_value=T('Start'), _type='submit'))]

    form = FORM(TABLE(*[TR(*[TD(o) for o in opt]) for opt in options]))

    if form.process().accepted:

        # remember options
        session.options = form.vars

        # all config options
        config = ftp_config.Config()
        config['page_width'] = form.vars.html_page_width + 'px'
        config['image_width'] = form.vars.html_image_width + 'px'
        config['image_height'] = form.vars.html_image_height + 'px'
        config['image_upscale'] = form.vars.html_image_upscale == 'checked'
        config['date_format'] = form.vars.datefmt

        # convert it
        floc = FileLocator(os.path.join(request.folder, 'uploads', input_data.input_file))
        reader = DrevoReader(floc)
        output = tempfile.TemporaryFile()
        writer = HtmlWriter(floc, output, config)
        writer.write(reader)

        # send the file
        output.seek(0)
        response.headers['Content-Type'] = 'text/html'
        output_name = os.path.splitext(input_data.original_name)[0] + '.html'
        return response.stream(output, 1048576, attachment=True, filename=output_name)

    return dict(form=form)
Пример #12
0
from cobra.io.sbml import create_cobra_model_from_sbml_file
from html_writer import HtmlWriter
import analysis_toolbox

main_html = HtmlWriter('res/fba.html')
main_html.write('<title>FBA</title>')
main_html.write('<h1>FBA</h1>\n')

model = create_cobra_model_from_sbml_file('data/iJO1366.xml')

main_html.write('</ul>\n')

print("Running standard FBA...")
solution = model.optimize()

if solution.status is not None:
    # write the flux summary for the knockout model as HTML
    analysis_toolbox.model_summary(model, solution, main_html)

main_html.close()
    def make_welcome_page(self, mailaddr, filename):
        db = Database()

        try:
            prob = db.get_properties('maildata')
            user_name = prob[mailaddr]
            writer = HtmlWriter(open(filename, mode='w'))
            writer.title('Welcome to ' + user_name + 'is page')
            writer.paragraph(user_name + 'のページへようこそ。')
            writer.paragraph('メール持っていますね。')
            writer.mailto(mailaddr, user_name)
            writer.close()
            print(filename + ' is created for' + mailaddr + ' (' + user_name + ')')

        except IOError as e:
            logging.exception(e)
Пример #14
0
def main():
    main_html = HtmlWriter('res/fba.html')
    main_html.write('<h1>Flux Balance Analysis</h1>\n')
    
    carbon_sources = {}
    BM_lower_bound = 0.01
    ko_reactions = ''
    ki_reactions = ''
    PPP_reaction = ''
    
    # full model carbon sources: glc, fru, xyl__D, succ, ac, rib__D, pyr
    
    #########################################
    # Core model for testing glycolysis KOs #
    #########################################
    #model = init_wt_model('core', {'ac' : -10}); ko_reactions = 'PGM'; ki_reactions = 'RED';
    #model = init_wt_model('core', {'glc' : -10}); ko_reactions = 'PFK'; ki_reactions = 'RED';

    #######################################
    # Full model Rubisco optimization KOs #
    #######################################
    #model = init_wt_model('full', {'ac' : -10}); ko_reactions = 'PGM,TRSARr,HPYRRx,HPYRRy'; ki_reactions = 'RED';
    #model = init_wt_model('full', {'rib_D' : -10}); ko_reactions = 'TKT1'; ki_reactions = 'RBC,PRK'; PPP_reaction = 'RBC';
    model = init_wt_model('full', {'xyl_D' : -10}); ko_reactions = 'RPI'; ki_reactions = 'RBC,PRK'; PPP_reaction = 'RBC';
    #model = init_wt_model('full', {'xyl_D' : -10}); ko_reactions = 'G6PDH2r,PFK,F6PA,FRUK,PFK_3,DRPA'; ki_reactions = 'RBC,PRK';
    #model = init_wt_model('full', {'fru' : -10, 'rib_D' : -10}); ko_reactions = 'G6PDH2r,PFK,F6PA,FRUK,PFK_3,DRPA,TKT1,TKT2'; ki_reactions = 'PKT';
    
    ###############################
    # Shikimate generating strain #
    ###############################
    #model = init_wt_model('full', {'fru' : -10});
    #ko_reactions = 'G6PDH2r,TALA'; ki_reactions = 'EX_3dhsk_c'; PPP_reaction = 'EX_3dhsk_c';
    #ko_reactions = 'G6PDH2r,PFK,F6PA,FRUK,PFK_3,DRPA'; ki_reactions = 'PKT'; PPP_reaction = 'PKT';

    ##########################################################
    # Testing no growth when electrons are provided directly #
    ##########################################################
    #model = init_wt_model('full', {}); ki_reactions = 'RED';
    #ko_reactions = "POR5,MCITL2";
    #ko_reactions = "POR5,FTHFLi,GART,RPI"; 
    
    models = {'WT' : model}

    if ko_reactions:
        for k in models.keys():
            m = deepcopy(models[k])
            knockout_reactions(m, ko_reactions)
            models[k + ' -%s' % ko_reactions] = m

    if ki_reactions:
        for k in models.keys():
            m = deepcopy(models[k])
            knockin_reactions(m, ki_reactions)
            models[k + ' +%s' % ki_reactions] = m

    # Run the optimization for the objective reaction and medium composition
    # set in the file.
    main_html.write('<table border="1">\n')
    main_html.write('<tr><td><b>Model Name</b></td><td><b>Growth Yield</b></td></tr>\n')
    growths = {}
    for name, model in sorted(models.iteritems()):
        print "solving %50s model" % name,
        ok = OptKnock(model)
        ok.prepare_FBA_primal()
        ok.solve()
        growths[name] = ok.get_objective_value()
    
        if growths[name] is None:
            main_html.write('<tr><td>%s</td><td>infeasible</td></tr>\n' % name)
        else:
            print ': f = %.3g' % growths[name]
            main_html.write('<tr><td>')
            html = main_html.branch(name)
            main_html.write('</td><td>%.3g</td></tr>\n' % growths[name])
            html.write('<h1>Model name: %s</h1>\n' % name)
            html.write('<h2>Growth Yield: %.3g</h2>\n' % growths[name])
            ok.draw_svg(html)
            ok.model_summary(html)
    main_html.write('</table>\n')

    if PPP_reaction:
        print 'Calculating Phenotypic Phase Plane for phosphoketolase ...'
        fig, ax = plt.subplots(1, figsize=(6,6))
        plot_multi_PPP(models, PPP_reaction, ax)
        ax.set_title('Phenotypic Phase Plane')
        main_html.embed_matplotlib_figure(fig, width=400, height=400)
Пример #15
0
def main():
    Pentose_target_compounds = ['D-Xylulose-5P', 'D-Ribulose-5P', 'D-Ribose-5P']
    
    PP_compounds = \
        ['D-Xylulose-5P',\
         'D-Ribulose-5P',\
         'D-Ribose-5P',\
         'D-Erythrose-4P',\
         'D-Sedoheptulose-7P',\
         'D-Fructose-6P',\
         'D-Glyceraldehyde-3P']
    
    Glycolysis_compounds = \
        ['Dihydroxyacetone-3P',\
         'D-Glyceraldehyde-3P',\
         'Bisphosphoglycerate',\
         '3-Phosphoglycerate',\
         '2-Phosphoglycerate',\
         'Phosphoenolpyruvate',\
         'Pyruvate']
    
    TCA_compounds = \
        ['Oxaloacetate',\
         'Citrate',\
         'cis-Aconitate',\
         'D-Isocitrate',\
         '2-Ketoglutarate',\
         #succinyl-CoA\
         'Succinate',\
         'Fumarate',\
         'Malate',\
         ]
    
    Biosynthese_compounds = PP_compounds + Glycolysis_compounds + TCA_compounds
    
    pathway_list = []
    # fast test
    pathway_list.append(("TEST", ['2-Phosphoglycerate'], ['Bisphosphoglycerate'], None))

    # Optimality Modules:
    pathway_list.append(("Glucose to Fructose", ['D-glucose-6P'], ['D-fructose-6P'], None))
    pathway_list.append(("Fructose to Glucose", ['D-fructose-6P'], ['D-glucose-6P'], None))
    
    pathway_list.append(("oxaloacetate+acetyl-CoA to citrate", ['oxaloacetate + acetyl-CoA'], ['citrate'], None))
    pathway_list.append(("cis-aconitate to succinate", ['cis-aconitate'], ['succinate'], None))
    pathway_list.append(("D-xylose to D-xylulose-5P", ['D-Xylose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("D-arabitol to D-xylulose-5P", ['D-Arabitol'], ['D-Xylulose-5P'], None))
    pathway_list.append(("L-arabinose to D-xylulose-5P", ['L-Arabinose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("L-xylulose to D-xylulose-5P", ['L-Xylulose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("ribitol to D-xylulose-5P", ['Ribitol'], ['D-Xylulose-5P'], None))
    pathway_list.append(("D-ribose to D-xylulose-5P", ['D-Ribose'], ['D-Xylulose-5P'], None))
    pathway_list.append(("Oxaloacetate to 2-Ketoglutarate", ['Oxaloacetate'], ['2-Ketoglutarate'], None))
    pathway_list.append(("Citrate to 2-Ketoglutarate", ['Citrate'], ['2-Ketoglutarate'], None))
    
    
    pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Xylulose-5P + D-Ribose-5P'], ['D-Fructose-6P + D-Fructose-6P + D-Glyceraldehyde-3P'], None))
    #pathway_list.append(("Pentose Phosphate", ['D-Xylulose-5P + D-Ribose-5P'], ['D-Glyceraldehyde-3P + D-Sedoheptulose-7P'], None))
    pathway_list.append(("D-glucose to D-ribulose-5P", ['D-Glucose'], ['D-Ribulose-5P'], None))
    pathway_list.append(("D-glucose to D-fructose-16P", ['D-Glucose'], ['D-Fructose-16P'], None))
    pathway_list.append(("D-fructose-6P to GAP+DHAP", ['D-Fructose-6P'], ['D-Glyceraldehyde-3P + Dihydroxyacetone-3P'], None))
    pathway_list.append(("GAP to 3-PG", ['D-Glyceraldehyde-3P'], ['3-Phosphoglycerate'], None))
    pathway_list.append(("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], None))
    pathway_list.append(("BPG to 3-PG", ['Bisphosphoglycerate'], ['3-Phosphoglycerate'], None))
    pathway_list.append(("BPG to 2-PG", ['Bisphosphoglycerate'], ['2-Phosphoglycerate'], None))
    pathway_list.append(("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], None))
    pathway_list.append(("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], None))

    # Biosynthesis
    pathway_list.append(("3-PG to L-Serine", ['3-Phosphoglycerate'], ['L-Serine'], None))
    pathway_list.append(("L-Serine to Glycine", ['L-Serine'], ['Glycine'], None))
    pathway_list.append(("Pyruvate to L-Alanine", ['Pyruvate'], ['L-Alanine'], None))
    
    pathway_list.append(("Synthesis of L-Serine", Biosynthese_compounds, ['L-Serine'], None))
    pathway_list.append(("Synthesis of L-Alanine", Biosynthese_compounds, ['L-Alanine'], None))
    pathway_list.append(("Synthesis of Glycine", Biosynthese_compounds, ['Glycine'], None))
    pathway_list.append(("Synthesis of L-Aspartate", Biosynthese_compounds, ['L-Aspartate'], None))
    pathway_list.append(("Synthesis of L-Glutamate", Biosynthese_compounds, ['L-Glutamate'], None))

    # Pentose utilization
    pathway_list.append(("L-Arabinose to Pentose Phosphate", ['L-Arabinose'], Pentose_target_compounds, None))
    pathway_list.append(("D-Xylose to Pentose Phosphate", ['D-Xylose'], Pentose_target_compounds, None))
    pathway_list.append(("D-Ribose to Pentose Phosphate", ['D-Ribose'], Pentose_target_compounds, None))
    pathway_list.append(("Ribitol to Pentose Phosphate", ['Ribitol'], Pentose_target_compounds, None))
    pathway_list.append(("D-Arabitol to Pentose Phosphate", ['D-Arabitol'], Pentose_target_compounds, None))

    # Glycolysis
    pathway_list.append(("GAP to PYR", ['D-Glyceraldehyde-3P'], ['Pyruvate'], 'PP'))
    pathway_list.append(("GAP to DHAP", ['D-Glyceraldehyde-3P'], ['Dihydroxyacetone-3P'], 'PP'))
    pathway_list.append(("GAP to PEP", ['D-Glyceraldehyde-3P + H2O'], ['Phosphoenolpyruvate + H2O'], 'PP'))
    pathway_list.append(("GAP to 2-PG", ['D-Glyceraldehyde-3P'], ['2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC to GAP", ['D-Glucose'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC to PYR", ['Glucose'], ['Pyruvate + Pyruvate'], 'PP'))
    pathway_list.append(("GLC-36P to GAP", ['D-Glucose-36P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to GAP", ['D-Glucose-6P'], ['D-Glyceraldehyde-3P + D-Glyceraldehyde-3P'], 'PP'))
    pathway_list.append(("GLC-6P to BPG", ['D-Glucose-6P'], ['Bisphosphoglycerate + Bisphosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 3-PG", ['D-Glucose-6P'], ['3-Phosphoglycerate + 3-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to 2-PG", ['D-Glucose-6P'], ['2-Phosphoglycerate + 2-Phosphoglycerate'], 'PP'))
    pathway_list.append(("GLC-6P to PEP", ['D-Glucose-6P'], ['Phosphoenolpyruvate + Phosphoenolpyruvate'], 'PP'))
    pathway_list.append(("2-PG to PYR", ['2-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(("3-PG to PYR", ['3-Phosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(("BPG to PYR", ['Bisphosphoglycerate'], ['Pyruvate'], 'PP'))
    pathway_list.append(("BPG to PEP", ['Bisphosphoglycerate'], ['Phosphoenolpyruvate'], 'PP'))
    
    # Arren's project
    pathway_list.append(("Glyoxylate + GAP to Pentose", ['Glyoxylate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None))
    pathway_list.append(("Glyoxylate + PYR to Pentose", ['Glyoxylate + Pyruvate'], Pentose_target_compounds, None))
    pathway_list.append(("Glycolate + GAP to Pentose", ['Glycolate + D-Glyceraldehyde-3P'], Pentose_target_compounds, None))
    pathway_list.append(("Glycolate + PYR to Pentose", ['Glycolate + Pyruvate'], Pentose_target_compounds, None))
    
    pathway_names = [pathway[0] for pathway in pathway_list]
    pathway_map = {}
    for pathway in pathway_list:
        pathway_map[pathway[0]] = pathway[1:]
    
    if (len(sys.argv) > 1):
        pathway_name = pathway_names[int(sys.argv[1]) - 1]
    else:
        pathway_name = TkListSelection(pathway_names, "Choose a pathway:")
        if (pathway_name == None):
            sys.exit(0)
    
    (substrates, products, pruning_method) = pathway_map[pathway_name]
    pathfinder = PathFinder(carbon_only=False, pruning_method=pruning_method, ignore_chirality=True)

    print "-"*80 + "\nChosen pathway name is %s\n" % pathway_name + "-"*80

    util._mkdir("../results")
    util._mkdir("../results/" + pathway_name)
    html_writer = HtmlWriter("../results/" + pathway_name + ".html")
    html_writer.write("<h1><center>%s</center></h1>\n" % pathway_name)
    html_writer.write("<ul>\n")
    for i in range(len(substrates)):
        for j in range(len(products)):
            ##(subs, prod) = pathfinder.balance_reaction(substrates[i], products[j])
            (subs, prod) = (substrates[i], products[j])
            pathway_prefix = "pathway_%d_%d" % (i, j)
            util._mkdir("../results/" + pathway_name + "/" + pathway_prefix)
            pathfinder.solve_pathway(subs, prod, html_writer, pathway_name, pathway_prefix, max_levels=6, stop_after_first_solution=True)
            html_writer.flush()
    html_writer.write("</ul>\n")
    html_writer.display()
    
    return
max_recipients = 1560
max_heatmap_index = 8.0

html_file = os.path.join(output_dir, 'overlap.html')

html_fp = open(html_file, 'w')
json_fp = open(json_file, 'rb')
results = json.load(json_fp)

all_results = {}

funders = results.keys()
funders.sort()

html_writer = HtmlWriter(html_fp)

html_writer.open_tag('html')
html_writer.open_tag('head')
html_writer.empty_tag('link', {'href': 'style.css', 
                               'rel':'stylesheet'})
html_writer.empty_tag('link', {'href': 'overlap.css', 
                               'rel':'stylesheet'})
html_writer.close_tag('head')
html_writer.open_tag('body')
html_writer.open_tag('div', {'class': 'container'})
html_writer.write_html('h1', 'Overlap between funders')
html_writer.open_tag('table')

html_writer.open_tag('tr')
Пример #17
0
#!/usr/bin/python

import sys
import os
import util
from chemconvert import hash2graph
from html_writer import HtmlWriter
from svg import Scene

html = HtmlWriter("../results/hash_list.html")
util._mkdir("../results/hash_list")

for line in util.parse_text_file(sys.argv[1]):
    print line
    graph = hash2graph(line)
    graph.initialize_pos()
    scene = graph.svg(Scene(200, 200, font_size=12))
    html.write_svg(scene, "../results/hash_list/" + line)

html.display()
sns.set()
sns.axes_style("darkgrid")

l = logging.getLogger()
l.setLevel(logging.INFO)

exp_name = "ecoli_ccm_aerobic_channeling"
DATA_DIR = os.path.expanduser("~/git/enzyme-cost/data")
RES_DIR = os.path.expanduser("~/git/enzyme-cost/res")
model_sbtab_fpath = os.path.join(DATA_DIR, "%s_ModelData.csv" % exp_name)
verify_sbtab_fpath = os.path.join(DATA_DIR, "%s_ValidationData.csv" % exp_name)
sqlite_fpath = os.path.join(RES_DIR, "%s.sqlite" % exp_name)
mat_fpath = os.path.join(RES_DIR, "%s.mat" % exp_name)
html_fpath = os.path.join(RES_DIR, "%s.html" % exp_name)

html = HtmlWriter(html_fpath)

logging.info("Converting input data from SBtab to SQLite")
_model_sbtab_dict = SBtabDict.FromSBtab(model_sbtab_fpath)
_verify_sbtab_dict = SBtabDict.FromSBtab(verify_sbtab_fpath)
comm = sqlite3.connect(sqlite_fpath)
_model_sbtab_dict.SBtab2SQL(comm, append=False)
_verify_sbtab_dict.SBtab2SQL(comm, append=False)
comm.commit()
comm.close()

logging.info("Reading data from SQLite database: " + sqlite_fpath)
sbtab_dict = SBtabDict.FromSQLite(sqlite_fpath)
logging.info("Creating an ECM model using the data")
model = ECMmodel(sbtab_dict, dG0_source="keq_table")
logging.info("Exporting data to .mat file: " + mat_fpath)
Пример #19
0
class Pathologic:
    def __init__(self, modules_file, experiment_name, max_module_size=6):

        self.modules_file = modules_file
        self.experiment_name = experiment_name
        self.max_module_size = max_module_size
        util._mkdir("../log")
        self.logfile = open(
            "../log/pathologic_" + self.experiment_name + ".log", "w")

        util._mkdir("../results")
        util._mkdir("../results/pathologic_" + self.experiment_name)
        self.html_writer = HtmlWriter("../results/pathologic_" +
                                      self.experiment_name + ".html")
        self.html_writer.write(
            "<h1>List of optimal and non-optimal pathways</h1>\n")
        self.html_writer.write("<ul>\n")
        self.line_counter = 0
        self.pathfinder = None

    def find_shortest_pathways(self,
                               substrate,
                               product,
                               max_levels,
                               stop_after_first_solution=True):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_shortest_pathway(
            [G_subs], [G_prod],
            max_levels=max_levels,
            stop_after_first_solution=stop_after_first_solution)

    def get_distance(self, substrate, product, max_levels):
        G_subs = compound2graph(substrate)
        G_prod = compound2graph(product)
        return self.pathfinder.find_distance([G_subs], [G_prod],
                                             max_levels=max_levels)

    def get_all_pathways(self, substrate, product, max_levels):
        """return all existing pathways with a length <= max_distance.
        """
        (original_compound_map, possible_pathways,
         min_length) = self.find_shortest_pathways(
             substrate,
             product,
             max_levels=max_levels,
             stop_after_first_solution=False)
        if (possible_pathways == []):
            return []
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(
                original_compound_map, possible_pathways)
            return [scene for (cost, scene) in scene_list
                    ]  # strip off the cost of each pathway

    def get_shortest_pathways(self, substrate, product, max_levels):
        """return -1 if the is no path with length <= max_levels.
           otherwise a pair containing a list of all pathways with the minimal length and the minimal length itself
        """
        (original_compound_map, possible_pathways,
         min_length) = self.find_shortest_pathways(
             substrate,
             product,
             max_levels=max_levels,
             stop_after_first_solution=True)
        if (possible_pathways == []):
            return ([], -1)
        else:
            scene_list = self.pathfinder.get_all_possible_scenes(
                original_compound_map, possible_pathways)
            return ([scene for (cost, scene) in scene_list], min_length
                    )  # strip off the cost of each pathway

    def verify_pathway(self, pathway):
        sys.stdout.write("Verifying pathway: %s\n" % str(pathway))
        for i in range(len(pathway) - 1):
            sys.stdout.write(" - checking '%s' -> '%s' ... " %
                             tuple(pathway[i:i + 2]))
            sys.stdout.flush()
            distance = self.get_distance(pathway[i], pathway[i + 1], 1)
            if (distance == -1):
                sys.stdout.write("FAILED (not neighbors)\n")
            else:
                sys.stdout.write("OK\n")
            sys.stdout.flush()

    def is_optimal(self, pathway, i, j, draw_scenes=False):
        sys.stdout.write(str(pathway[i:j + 1]) + " ... ")

        wt_distance = j - i
        if (wt_distance <= 1):  # we have verified that this is optimal already
            return True

        if (draw_scenes):
            # try to find at least one path which is shorter than the wild-type path:
            (scenes,
             dist) = self.get_shortest_pathways(pathway[i], pathway[j],
                                                wt_distance - 1)
        else:
            dist = self.get_distance(pathway[i], pathway[j], wt_distance - 1)

        if (
                dist == -1
        ):  # which means no shorter path has been found, hence the WT pathway is one of the shortest
            sys.stdout.write(" is optimal!\n")
            self.html_writer.write(
                "<li><span style=color:green>%s - OPTIMAL</span></li>\n" %
                str(pathway[i:j + 1]))
            self.html_writer.flush()
            return True
        else:  # there is a shorter path than the WT one
            sys.stdout.write(" is not optimal!\n")
            self.html_writer.write(
                "<li>\n  <span style=color:red>%s - NOT OPTIMAL</span><br>\n  "
                % str(pathway[i:j + 1]))

            if (draw_scenes):
                #for s in scenes:
                s = scenes[
                    0]  # draws only the first scene (otherwise it could be too long)
                self.html_writer.write_svg(
                    s, "pathologic_" + self.experiment_name +
                    "/pathway_%d_%d_%d" % (self.line_counter, i, j))
                self.html_writer.write("\n</li>\n")
                self.html_writer.flush()
            return False

    def find_modules(self, pathway, draw_scenes=False):
        self.verify_pathway(pathway)
        i = 0
        for j in range(2, len(pathway)):
            if (j - i >= self.max_module_size):
                sys.stdout.write(
                    str(pathway[i:(j + 1)]) +
                    " is too long for me, chopping off the head...\n")
                i += 1

            # shorten the path from it's head until it is optimal (or too short, i.e. length=1)
            while (
                (j - i) > 1 and
                (not self.is_optimal(pathway, i, j, draw_scenes=draw_scenes))):
                i += 1

    def analyze(self,
                carbon_only=True,
                use_antimotifs=True,
                draw_scenes=False):
        for line in util.parse_text_file("../rec/" + self.modules_file +
                                         ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=False,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=True,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)

            pathway = line.split(';')
            self.find_modules(pathway, draw_scenes=draw_scenes)
            self.line_counter += 1

    def analyze_pairs(self,
                      carbon_only=True,
                      use_antimotifs=True,
                      max_distance=4):
        distances = [
        ]  # the minimal pathway length between the substrate and the product
        alternatives = [
        ]  # each value is the number of alternative pathways with the minimal distance

        line_counter = 0
        for line in util.parse_text_file("../rec/" + self.modules_file +
                                         ".txt"):
            if (line[0] == '@'):
                line = line[1:]
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=False,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)
            else:
                self.pathfinder = PathFinder(carbon_only=carbon_only,
                                             pruning_method=None,
                                             ignore_chirality=True,
                                             use_antimotifs=use_antimotifs,
                                             outstream=self.logfile)

            (subs, prod, max_steps) = line.split(";", 2)
            if (max_steps in ['-1', 'inf', '']):
                sys.stdout.write(subs + " -(?)-> " + prod)
                sys.stdout.flush()
                (scenes,
                 dist) = self.get_shortest_pathways(subs, prod, max_distance)
            else:
                dist = int(max_steps)
                sys.stdout.write(subs + " -(%d)-> " % dist + prod)
                sys.stdout.flush()
                scenes = self.get_all_pathways(subs, prod, dist)

            if (dist == -1):
                sys.stdout.write(", Distance(L) = inf, N = 0\n")
                sys.stdout.flush()
                distances.append("inf")
                alternatives.append(0)
                self.html_writer.write(
                    "<li><span style=color:red>%s <-> %s (distance > %d)</span></li>\n"
                    % (subs, prod, self.max_module_size))
                self.html_writer.flush()
            else:
                sys.stdout.write(", Distance(L) = %d, N = %d\n" %
                                 (dist, len(scenes)))
                sys.stdout.flush()
                distances.append(dist)
                alternatives.append(len(scenes))
                self.html_writer.write(
                    "<li><span style=color:green>%s <-> %s (distance = %d)</span></li>\n"
                    % (subs, prod, dist))
                for i in range(len(scenes)):
                    self.html_writer.write("<li>")
                    self.html_writer.write_svg(
                        scenes[i], "pathologic_" + self.experiment_name +
                        "/pair%d_path%d" % (line_counter, i))
                    self.html_writer.write("</li>\n")
                self.html_writer.flush()
            line_counter += 1

        result_file = open("../results/" + self.experiment_name + ".txt", "w")
        result_file.write(str(distances) + "\n" + str(alternatives) + "\n")
        result_file.close()

    def display(self):
        self.html_writer.write("</ul>\n")
        self.html_writer.write(self.pathfinder.reactor.antimotif_summary())
        self.html_writer.display()

    def __del__(self):
        del self.pathfinder
        self.logfile.close()