def test_parallel_hubness_equal_serial_hubness_distance_based(self): S_k_p, D_k_p, N_k_p = hubness_p( self.distance, k=5, metric='distance', verbose=True, n_jobs=2) S_k_s, D_k_s, N_k_s = hubness_s( self.distance, k=5, metric='distance', verbose=False) result = np.allclose(S_k_p, S_k_s) & \ np.allclose(D_k_p, D_k_s) & \ np.allclose(N_k_p, N_k_s) return self.assertTrue(result)
def test_parallel_hubness_equal_serial_hubness_similarity_based(self): similarity = random_sparse_matrix(size=1000) S_k_p, D_k_p, N_k_p = hubness_p( similarity, k=5, metric='similarity', verbose=False, n_jobs=-1) S_k_s, D_k_s, N_k_s = hubness_s( similarity, k=5, metric='similarity', verbose=False) result = np.allclose(S_k_p, S_k_s) & \ np.allclose(D_k_p, D_k_s) & \ np.allclose(N_k_p, N_k_s) return self.assertTrue(result)