Пример #1
0
from hubbard import HubbardHamiltonian, density, sp2, plot
import sys
import numpy as np
import sisl

# Build sisl Geometry object
mol = sisl.get_sile('clar-goblet.xyz').read_geometry()
mol.sc.set_nsc([1, 1, 1])
mol = mol.move(-mol.center(what='xyz'))

# 3NN tight-binding model
Hsp2 = sp2(mol, t1=2.7, t2=0.2, t3=.18, dim=2)
H = HubbardHamiltonian(Hsp2)
H.random_density()
H.set_polarization(up=[6], dn=[28])
n_AFM = H.n

f = open('FM-AFM.dat', 'w')

mixer = sisl.mixing.PulayMixer(0.7, history=7)

for u in np.arange(5, 0, -0.25):
    # We approach the solutions for different U values
    H.U = u
    mixer.clear()

    # AFM case first
    success = H.read_density(
        'clar-goblet.nc')  # Try reading, if we already have density on file
    if not success:
        H.n = n_AFM.copy()
Пример #2
0
# 3NN tight-binding model
Hsp2 = sp2(mol, t1=2.7, t2=0.2, t3=.18)

H = HubbardHamiltonian(Hsp2)

# Plot the single-particle TB (U = 0.0) wavefunction (SO) for Type 1
H.U = 0.0
ev, evec = H.eigh(eigvals_only=False, spin=0)
N = H.q[0]
midgap = H.find_midgap()
ev -= midgap
f = 3800
v = evec[:, int(round(N)) - 1]
j = np.argmax(abs(v))
wf = f * v**2 * np.sign(v[j]) * np.sign(v)
p = plot.Wavefunction(H, wf)
p.set_title(r'$E = %.3f$ eV' % (ev[int(round(N)) - 1]))
p.savefig('Fig3_SOMO.pdf')

# Plot MFH spin polarization for U = 3.5 eV
H.U = 3.5
success = H.read_density(
    'fig3_type1.nc')  # Try reading, if we already have density on file
if not success:
    H.set_polarization([23])
mixer = sisl.mixing.PulayMixer(0.7, history=7)
H.converge(density.calc_n_insulator, mixer=mixer)
H.write_density('fig3_type1.nc')
p = plot.SpinPolarization(H, ext_geom=mol, vmax=0.20)
p.savefig('fig3_pol.pdf')
import sisl
from sisl import geom, Atom
import numpy as np
import os
from hubbard import HubbardHamiltonian, sp2, density, plot

W = 7
bond = 1.42

# single-orbital
g = geom.zgnr(W)
TBHam = sp2(g, t1=2.7, t2=0, t3=0)
HH = HubbardHamiltonian(TBHam, U=3, nkpt=[100, 1, 1])
HH.set_polarization([0], dn=[-1])
HH.converge(density.calc_n, print_info=True, tol=1e-10, steps=3)
n_single = HH.n * 1

# Start bands-plot, the single-orbital case will be plotted in black
p = plot.Bandstructure(HH, c='k')


class OrbitalU(sisl.Orbital):
    __slots__ = ('U', )

    def __init__(self, *args, U=0., **kwargs):
        super().__init__(*args, **kwargs)
        self.U = U

    def copy(self, *args, **kwargs):
        copy = super().copy(*args, **kwargs)
        copy.U = self.U
Пример #4
0
# Output file to collect the energy difference between
# FM and AFM solutions
f = open('FM-AFM.dat', 'w')

mixer = sisl.mixing.PulayMixer(0.7, history=7)

for u in np.linspace(0.0, 4.0, 5):
    # We approach the solutions from above, starting at U=4eV
    H.U = 4.0 - u

    # AFM case first
    success = H.read_density(
        mol_file + '.nc')  # Try reading, if we already have density on file
    if not success:
        H.random_density()
        H.set_polarization([1, 6, 15])  # polarize lower zigzag edge
    mixer.clear()
    dn = H.converge(density.calc_n_insulator, mixer=mixer)
    eAFM = H.Etot
    H.write_density(mol_file + '.nc')

    p = plot.SpinPolarization(H, colorbar=True, vmax=0.4, vmin=-0.4)
    p.annotate()
    p.savefig('%s-spin-U%i.pdf' % (mol_file, H.U * 1000))

    # Now FM case
    H.q[0] += 1  # change to two more up-electrons than down
    H.q[1] -= 1
    try:
        H.read_density(
            mol_file +
Пример #5
0
# Set U and kT for the whole calculation
U = 3.
kT = 0.025

# Build zigzag GNR
ZGNR = sisl.geom.zgnr(2)

# and 3NN TB Hamiltonian
H_elec = sp2(ZGNR, t1=2.7, t2=0.2, t3=0.18)

# Hubbard Hamiltonian of elecs
MFH_elec = HubbardHamiltonian(H_elec, U=U, nkpt=[102, 1, 1], kT=kT)

# Initialize spin densities
MFH_elec.set_polarization([0], dn=[-1])  # Ensure we break symmetry
# Converge Electrode Hamiltonians
dn = MFH_elec.converge(density.calc_n,
                       mixer=sisl.mixing.PulayMixer(weight=.7, history=7),
                       tol=1e-10)

# Central region is a repetition of the electrodes without PBC
HC = H_elec.tile(3, axis=0)
HC.set_nsc([1, 1, 1])

# Map electrodes in the device region
elec_indx = [range(len(H_elec)), range(len(HC.H) - len(H_elec), len(HC.H))]

# MFH object
MFH_HC = HubbardHamiltonian(HC.H, n=np.tile(MFH_elec.n, 3), U=U, kT=kT)
Пример #6
0
# Build zigzag GNR
ZGNR = sisl.geom.zgnr(5)

# and 3NN TB Hamiltonian
H_elec = sp2(ZGNR, t1=2.7, t2=0.2, t3=0.18)

mixer = sisl.mixing.PulayMixer(0.6, history=7)

# Hubbard Hamiltonian of elecs
MFH_elec = HubbardHamiltonian(H_elec, U=U, nkpt=[102, 1, 1], kT=kT)
# Initial densities
success = MFH_elec.read_density('elec_density.nc')
if not success:
    # If no densities saved, start with random densities with maximized polarization at the edges
    MFH_elec.random_density()
    MFH_elec.set_polarization([0], dn=[9])

# Converge Electrode Hamiltonians
dn = MFH_elec.converge(density.calc_n, mixer=mixer)
# Write also densities for future calculations
MFH_elec.write_density('elec_density.nc')
# Plot spin polarization of electrodes
p = plot.SpinPolarization(MFH_elec, colorbar=True)
p.savefig('spin_elecs.pdf')

# Find Fermi level of reservoirs and write to netcdf file
Ef_elecs = MFH_elec.fermi_level(q=MFH_elec.q)
MFH_elec.H.shift(-Ef_elecs)
MFH_elec.H.write('MFH_elec.nc')

# Build central region TB Hamiltonian
Пример #7
0
import sisl

# Build sisl Geometry object
mol = sisl.get_sile('junction-2-2.XV').read_geometry()
mol.sc.set_nsc([1, 1, 1])
# 3NN tight-binding model
Hsp2 = sp2(mol, t1=2.7, t2=0.2, t3=.18)

H = HubbardHamiltonian(Hsp2)

# Output file to collect the energy difference between
# FM and AFM solutions
f = open('FM-AFM.dat', 'w')

mixer = sisl.mixing.PulayMixer(0.7, history=7)
H.set_polarization([77], dn=[23])
for u in np.linspace(0.0, 1.4, 15):
    # We approach the solutions from above, starting at U=4eV
    H.U = 4.4 - u
    # AFM case first
    success = H.read_density(
        'fig_S15.nc')  # Try reading, if we already have density on file

    mixer.clear()
    dn = H.converge(density.calc_n_insulator, mixer=mixer, tol=1e-6)
    eAFM = H.Etot
    H.write_density('fig_S15.nc')

    # Now FM case
    H.q[0] += 1  # change to two more up-electrons than down
    H.q[1] -= 1
Пример #8
0
from hubbard import HubbardHamiltonian, sp2, density, plot
import numpy as np
import sisl
"""
For this system we get an open-shell solution for U>3 eV
This test obtaines the closed-shell solution for U=2 eV for both a spin-polarized and unpolarized situation
"""

# Build sisl Geometry object
molecule = sisl.get_sile('mol-ref/mol-ref.XV').read_geometry()
molecule.sc.set_nsc([1, 1, 1])

Hsp2 = sp2(molecule)

H = HubbardHamiltonian(Hsp2, U=2.0)
H.set_polarization([36], [77])
dn = H.converge(density.calc_n_insulator,
                mixer=sisl.mixing.LinearMixer(),
                tol=1e-7)
print('Closed-shell spin-polarized calculation:')
print('dn: {}, Etot: {}\n'.format(dn, H.Etot))

p = plot.Plot()
for i in range(2):
    ev = H.eigh(spin=i) - H.find_midgap()
    ev = ev[abs(ev) < 2]
    p.axes.plot(ev,
                np.zeros_like(ev), ['or', 'xg'][i],
                label=[r'$\sigma=\uparrow$', r'$\sigma=\downarrow$'][i])

# Compute same system with spin degeneracy