Пример #1
0
    def add_color(self, color=None):
        '''
		'''
        if color is None:
            color = self.labColorRep.cget('bg')

        if self.type.get() == 'Qualitative':
            if color in list(self.saveColors.values()):
                tk.messagebox.showinfo(
                    'Alread iny ..',
                    'Color already in ' + 'palette. You can delete colors ' +
                    'by right-clicking on bars. To change ' +
                    'the psoition of a color move the bars' +
                    ' to the correct position in the graph.',
                    parent=self.toplevel)
                return
            for n in range(len(self.bars) + 5):
                if n not in self.saveColors and n in self.bars:
                    break
                elif n not in self.bars:
                    self.add_rectangle(n)
                    break
            self.bars[n].set_facecolor(color)
            self.saveColors[n] = color
            self.figure.canvas.draw()

        elif 'Gradient' in self.type.get():
            if 'sequential' in self.type.get():
                self.get_cmap_by_color(color)
                self.color_bars_by_gradient()
            else:
                if self.firstColor is None:
                    self.firstColor = color
                    self.firstColorSaved = color
                    self.get_cmap_by_color(color, reverse=True)
                    self.color_bars_by_gradient(how='half')
                else:
                    col1 = husl.hex_to_husl(self.firstColor)
                    col2 = husl.hex_to_husl(color)
                    s, l = self.get_sl_from_entry()
                    if s is None:
                        return

                    cmapOutput = sns.diverging_palette(
                        col1[0],
                        col2[0],
                        s=s,
                        l=l,
                        as_cmap=True,
                        center=self.center.get())
                    self.cmap = matplotlib.cm.get_cmap(cmapOutput)

                    self.firstColor = None
                    self.color_bars_by_gradient()
Пример #2
0
    def test_snapshot(self):
        for hex_color, colors in self.snapshot.items():

            # Test forward functions
            test_rgb = husl.hex_to_rgb(hex_color)
            self.assertTuplesClose(test_rgb, colors['rgb'])
            test_xyz = husl.rgb_to_xyz(test_rgb)
            self.assertTuplesClose(test_xyz, colors['xyz'])
            test_luv = husl.xyz_to_luv(test_xyz)
            self.assertTuplesClose(test_luv, colors['luv'])
            test_lch = husl.luv_to_lch(test_luv)
            self.assertTuplesClose(test_lch, colors['lch'])
            test_husl = husl.lch_to_husl(test_lch)
            self.assertTuplesClose(test_husl, colors['husl'])
            test_huslp = husl.lch_to_huslp(test_lch)
            self.assertTuplesClose(test_huslp, colors['huslp'])

            # Test backward functions
            test_lch = husl.husl_to_lch(colors['husl'])
            self.assertTuplesClose(test_lch, colors['lch'])
            test_lch = husl.huslp_to_lch(colors['huslp'])
            self.assertTuplesClose(test_lch, colors['lch'])
            test_luv = husl.lch_to_luv(test_lch)
            self.assertTuplesClose(test_luv, colors['luv'])
            test_xyz = husl.luv_to_xyz(test_luv)
            self.assertTuplesClose(test_xyz, colors['xyz'])
            test_rgb = husl.xyz_to_rgb(test_xyz)
            self.assertTuplesClose(test_rgb, colors['rgb'])
            self.assertEqual(husl.rgb_to_hex(test_rgb), hex_color)

            # Full test
            self.assertEqual(husl.husl_to_hex(*colors['husl']), hex_color)
            self.assertTuplesClose(husl.hex_to_husl(hex_color), colors['husl'])
            self.assertEqual(husl.huslp_to_hex(*colors['huslp']), hex_color)
            self.assertTuplesClose(husl.hex_to_huslp(hex_color), colors['huslp'])
Пример #3
0
    def update_sl(self, color):
        '''
		'''
        if color is not None:
            huslColor = husl.hex_to_husl(color)
            self.slVars['s'].set(huslColor[1])
            self.slVars['l'].set(huslColor[2])
Пример #4
0
 def test_snapshot(self):
     for h in range(37):
         for s in range(21):
             for l in range(21):
                 H = h * 10.0
                 S = s * 5.0
                 L = l * 5.0
                 test = husl.husl_to_hex(H, S, L)
                 correct = self.snapshot['husl'][h][s][l]
                 self.assertEqual(test, correct)
                 test2 = husl.husl_to_hex(*husl.hex_to_husl(correct))
                 self.assertEqual(test2, correct)
Пример #5
0
 def test_snapshot(self):
     for h in range(37):
         for s in range(21):
             for l in range(21):
                 H = h * 10.0
                 S = s * 5.0
                 L = l * 5.0
                 test = husl.husl_to_hex(H, S, L)
                 correct = self.snapshot['husl'][h][s][l]
                 self.assertEqual(test, correct)
                 test2 = husl.husl_to_hex(*husl.hex_to_husl(correct))
                 self.assertEqual(test2, correct)
Пример #6
0
    def update_hex_by_husl(self, event):
        '''
		'''
        color = self.labColorRep.cget('bg')
        huslColorHue = husl.hex_to_husl(color)[0]
        s, l = self.get_sl_from_entry()
        if s is None:
            return
        hex = husl.husl_to_hex(huslColorHue, s, l)
        self.labColorRep.configure(bg=hex)
        paletteType = self.type.get()
        if paletteType != 'Qualitative':
            if 'diverging' in paletteType:
                self.firstColor = str(self.firstColorSaved)
                self.add_color()
            else:
                self.add_color()
Пример #7
0
    def test_snapshot(self):
        for hex_color, colors in self.snapshot.items():

            # Test forward functions
            test_rgb = husl.hex_to_rgb(hex_color)
            self.assertTuplesClose(test_rgb, colors['rgb'])
            test_xyz = husl.rgb_to_xyz(test_rgb)
            self.assertTuplesClose(test_xyz, colors['xyz'])
            test_luv = husl.xyz_to_luv(test_xyz)
            self.assertTuplesClose(test_luv, colors['luv'])
            test_lch = husl.luv_to_lch(test_luv)
            self.assertTuplesClose(test_lch, colors['lch'])
            test_husl = husl.lch_to_husl(test_lch)
            self.assertTuplesClose(test_husl, colors['husl'])
            test_huslp = husl.lch_to_huslp(test_lch)
            self.assertTuplesClose(test_huslp, colors['huslp'])

            # Test backward functions
            test_lch = husl.husl_to_lch(colors['husl'])
            self.assertTuplesClose(test_lch, colors['lch'])
            test_lch = husl.huslp_to_lch(colors['huslp'])
            self.assertTuplesClose(test_lch, colors['lch'])
            test_luv = husl.lch_to_luv(test_lch)
            self.assertTuplesClose(test_luv, colors['luv'])
            test_xyz = husl.luv_to_xyz(test_luv)
            self.assertTuplesClose(test_xyz, colors['xyz'])
            test_rgb = husl.xyz_to_rgb(test_xyz)
            self.assertTuplesClose(test_rgb, colors['rgb'])
            self.assertEqual(husl.rgb_to_hex(test_rgb), hex_color)

            # Full test
            self.assertEqual(husl.husl_to_hex(*colors['husl']), hex_color)
            self.assertTuplesClose(husl.hex_to_husl(hex_color), colors['husl'])
            self.assertEqual(husl.huslp_to_hex(*colors['huslp']), hex_color)
            self.assertTuplesClose(husl.hex_to_huslp(hex_color),
                                   colors['huslp'])
import matplotlib.pyplot as plt
import seaborn as sns
from palettable import cartocolors
from husl import hex_to_husl

colours = cartocolors.qualitative.Safe_10.hex_colors
cpalette = sns.color_palette(colours)
cpalette_light = sns.light_palette(hex_to_husl(colours[1]), input="husl")

cmap_qualitative = cartocolors.qualitative.Safe_10.mpl_colormap
cmap_light = sns.light_palette(hex_to_husl(colours[1]),
                               input="husl",
                               as_cmap=True)
cmap_diverging = sns.diverging_palette(h_neg=227,
                                       h_pos=4,
                                       s=73,
                                       l=60,
                                       n=12,
                                       as_cmap=True)
cmap_diverging.set_bad('white')

pltmarkers = ['o', 'X', 'D', 'P', 'X']


def set_style():
    sns.set_palette(cpalette)
    sns.set_style(
        'darkgrid', {
            'axes.spines.right': False,
            'axes.spines.top': False,
            'axes.facecolor': '.93'
def plt_matches(data,
                metric,
                between='Generative Model',
                by='Attack Classifier',
                cols='Feature Set',
                n=15):

    between_groups = list(data.groupby(between).groups.keys())
    combs = [c for c in combinations_with_replacement(between_groups, 2)]

    if cols == 'Generative Model':
        filtercmap = GMCMAP
    elif cols == 'Attack Classifier':
        filtercmap = ATTACKSCMAP
    elif cols == 'Feature Set':
        filtercmap = FEATURECMAP
    else:
        raise ValueError(f'Unknown groupby {between}')

    plots = []
    for fg, fgroup in data.groupby(cols):
        groups = fgroup.groupby(by)

        nrows = int(ceil(len(groups) / 2))
        fig, ax = plt.subplots(nrows,
                               2,
                               figsize=(10, nrows * 4),
                               sharex=True,
                               sharey=True)
        ax = ax.flatten()

        for i, (g, group) in enumerate(groups):
            subgroups = group.groupby(between)

            pltdata = DataFrame(columns=between_groups, index=between_groups)
            prey = {}

            for sg, sgroup in subgroups:
                prey[sg] = set(
                    sgroup.sort_values(metric)[['Target'
                                                ]].iloc[-n:].values.flatten())

            for c in combs:
                matches = len(prey[c[0]].intersection(prey[c[1]]))
                pltdata.loc[c[0], c[1]] = matches
                pltdata.loc[c[1], c[0]] = matches
            try:
                cmap = sns.light_palette(hex_to_husl(filtercmap[fg]),
                                         input="husl",
                                         as_cmap=True)
            except:
                cmap = cmap_light
            sns.heatmap(pltdata,
                        ax=ax[i],
                        square=True,
                        annot=True,
                        vmin=0,
                        vmax=n,
                        cmap=cmap)
            ax[i].set(title=g)
            ax[i].set_xticklabels([x for x in ax[i].get_xticklabels()],
                                  rotation=45,
                                  ha='right')

        if bool(len(groups) % 2):
            ax[-1].axis('off')
        fig.suptitle(
            f'Matches between {n} most vulnerable targets by {by} for {cols} {fg}',
            y=1.05)
        plots.append(fig)

    return plots