Пример #1
0
############################
## Rohini Pandhi          ##          
## Homework Assignment 2  ##
## Run File               ##
## 01/23/2014             ##
############################

import argparse
from hw2 import load_iris_data, cross_validate, knn, nb, lr

# Load Iris dataset
(features, species, species_names) = load_iris_data()

# Argument parse
parser = argparse.ArgumentParser(description='Select KNN, Naive Bayes, or Logistic Regression')
parser.add_argument('-c', '--classifier', help='a classifier type: KNN, NB, or LR (if none selected, default will run all', required=False)
args = parser.parse_args()

try: 
  if (args.classifier.upper() == "KNN"): 
    classifier_list = [("KNN",knn)]
  elif (args.classifier.upper() == "NB"):
    classifier_list = [("Naive Bayes",nb)]
  elif (args.classifier.upper() == "LR"): 
    classifier_list = [("Logistic Regression",lr)]
except:
  classifier_list = [("KNN",knn), ("Naive Bayes",nb), ("Logistic Regression",lr)] #using imported functions above

# Loop through each tuple of the classifier list
for (classifier_string, classifier_function) in classifier_list:
  
Пример #2
0
from hw2 import load_iris_data, cross_validate, knn, nb, lr, logistic

(XX,yy,y)=load_iris_data()

classfiers_to_cv=[("kNN",knn),("Naive Bayes",nb), ("Linear Regression",lr), ("Logistic REgression",logistic)]

for (c_label, classifer) in classfiers_to_cv :

    print
    print "---> %s <---" % c_label

    best_k=0
    best_cv_a=0
    for k_f in [2,3,5,10,15,30,50,75] :
       cv_a = cross_validate(XX, yy, classifer, k_fold=k_f)
       if cv_a >  best_cv_a :
            best_cv_a=cv_a
            best_k=k_f

       print "fold <<%s>> :: acc <<%s>>" % (k_f, cv_a)

    print "\n %s Highest Accuracy: fold <<%s>> :: <<%s>>\n" % (c_label, best_k, best_cv_a)

Пример #3
0
############################
## Rohini Pandhi          ##
## Homework Assignment 2  ##
## Run File               ##
## 01/23/2014             ##
############################

import argparse
from hw2 import load_iris_data, cross_validate, knn, nb, lr

# Load Iris dataset
(features, species, species_names) = load_iris_data()

# Argument parse
parser = argparse.ArgumentParser(
    description='Select KNN, Naive Bayes, or Logistic Regression')
parser.add_argument(
    '-c',
    '--classifier',
    help=
    'a classifier type: KNN, NB, or LR (if none selected, default will run all',
    required=False)
args = parser.parse_args()

try:
    if (args.classifier.upper() == "KNN"):
        classifier_list = [("KNN", knn)]
    elif (args.classifier.upper() == "NB"):
        classifier_list = [("Naive Bayes", nb)]
    elif (args.classifier.upper() == "LR"):
        classifier_list = [("Logistic Regression", lr)]