Пример #1
0
def test_convnet(learning_rate=0.1, n_epochs=1000, nkerns=[16, 512, 20],filter_shape=[9,5],
        batch_size=200, verbose=True):
    """
    Wrapper function for testing Multi-Stage ConvNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer:
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        # (batch size, num input feature maps,image height, image width)
        image_shape=(batch_size,3,32,32),
        # number of filters, num input feature maps,filter height, filter width)
        filter_shape=(nkerns[0],3,filter_shape[0],filter_shape[0]),
        poolsize=(2,2)
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        # (32-9+1)/2 = 12 
        image_shape=(batch_size,nkerns[0],(33-filter_shape[0])/2,(33-filter_shape[0])/2),
        filter_shape=(nkerns[1],nkerns[0],filter_shape[1],filter_shape[1]),
        poolsize=(2,2)
    )

    # Combine Layer 0 output and Layer 1 output
    # TODO: downsample the first layer output to match the size of the second
    # layer output.
    layer0_output_ds = downsample.max_pool_2d(
            # nkerns[0] 12 x 12
            # nkerns[1] 4 x 4
            input=layer0.output,
            ds=(3,3), # TDOD: change ds
            ignore_border=False
    )
    # concatenate layer
    layer2_input = T.concatenate([layer1.output, layer0_output_ds], axis=1)

    filter_shape_2 = ((33-filter_shape[0])/2 - filter_shape[1]+1)/2
    # TODO: Construct the third convolutional pooling layer
    layer2 = LeNetConvPoolLayer(
        rng,
        input=layer2_input,
        # (12-5+1)/2 = 4        
        image_shape=(batch_size,nkerns[1]+nkerns[0],filter_shape_2,filter_shape_2), #TODO
        filter_shape=(nkerns[2],nkerns[1]+nkerns[0],filter_shape_2,filter_shape_2), #TODO
        poolsize= (1,1)#TODO
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[2] * 1 * 1).
    layer3_input = layer2.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer3 = HiddenLayer(
        rng,
        input=layer3_input,
        n_in=nkerns[2] * 1 * 1,
        n_out= 10,#TODO,
        activation=T.nnet.sigmoid
    )

    # classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output,
        n_in= 10,#TODO
        n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer4.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)
Пример #2
0
def test_CDNN(learning_rate=0.1, n_epochs=1000, nkerns=[16, 512],
        batch_size=200, n_hidden=[200,200,200], verbose=True):
    """
    Wrapper function for testing CNN in cascade with DNN
    """
    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        # (batch size, num input feature maps,image height, image width)
        image_shape=(batch_size,3,32,32),
        # number of filters, num input feature maps,filter height, filter width)
        filter_shape=(nkerns[0],3,5,5),
        poolsize=(2,2)
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        # (32-5+1)/2
        image_shape=(batch_size,nkerns[0],14,14),
        filter_shape=(nkerns[1],nkerns[0],5,5),
        poolsize=(2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)
    
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 5 * 5,
        n_out= n_hidden[0],#TODO,
        activation=T.nnet.sigmoid
    )
    
    layer3 = HiddenLayer(
        rng,
        input=layer2.output,
        n_in=n_hidden[0],
        n_out=n_hidden[1],#TODO,
        activation=T.nnet.sigmoid
    )

    layer4 = HiddenLayer(
        rng,
        input=layer3.output,
        n_in=n_hidden[1],
        n_out=n_hidden[2],#TODO,
        activation=T.nnet.sigmoid
    )
    
    layer5 = LogisticRegression(
            input=layer4.output,
            n_in=n_hidden[2],
            n_out=10
    )

    # the cost we minimize during training is the NLL of the model
    cost = layer5.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer5.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer5.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer5.params + layer4.params + layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)
def loadModel(imageArray,validSet, learning_rate=0.1, n_epochs=1000, nkerns=[16, 512, 20],
        batch_size=200, verbose=True):

    rng = numpy.random.RandomState(23455)
    #datasets = loadData(shared=False)

    #train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = validSet
    #test_set_x, test_set_y = datasets[2]

    valid_set_x[0] = imageArray 



    valid_set_x, valid_set_y = shared_dataset([valid_set_x, valid_set_y])


    # compute number of minibatches for training, validation and testing
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]


    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    #Make learning rate a theano shared variable 

    # Reshape matrix of rasterized images of shape (batch_size, 1 * 48 * 48)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, 48, 48))
    
    # TODO: Construct the first convolutional pooling layer:
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape= (batch_size, 1, 48, 48),
        filter_shape= (nkerns[0],1,3,3),
        poolsize= (2,2)
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape= (batch_size, nkerns[0], 23, 23) ,
        filter_shape= (nkerns[1],nkerns[0],4,4),
        poolsize= (2,2)
    )

    # TODO: Construct the third convolutional pooling layer
    layer2 = LeNetConvPoolLayer(
        rng,
        input=layer1.output,
        image_shape= (batch_size,nkerns[1],10,10),
        filter_shape= (nkerns[2],nkerns[1],3,3),
        poolsize= (2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[2] * 1 * 1).
    layer3_input = layer2.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer3 = HiddenLayer(
        rng,
        input=layer3_input,
        n_in=nkerns[2] * 4 * 4,
        n_out= batch_size,
        activation=T.tanh
    )

    # classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output,
        n_in= batch_size,
        n_out=7)

    
    getPofYGivenX = theano.function(
        [index],
        layer4.pOfYGivenX(),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        },
        on_unused_input='ignore'
    )

    #Load the saved parameters
    f = open('layer0.W','rb')
    layer0.W.set_value(cPickle.load(f))
    f.close()
    
    f = open('layer0.b','rb')
    layer0.b.set_value(cPickle.load(f))     
    f.close()
    
    f = open('layer1.W','rb')
    layer1.W.set_value(cPickle.load(f))     
    f.close()
    
    f = open('layer1.b','rb')
    layer1.b.set_value(cPickle.load(f)) 
    f.close()
    
    f = open('layer2.W','rb')
    layer2.W.set_value(cPickle.load(f)) 
    f.close()
    
    f = open('layer2.b','rb')
    layer2.b.set_value(cPickle.load(f))
    f.close()
    
    f = open('layer3.W','rb')
    layer3.W.set_value(cPickle.load(f))
    f.close()
    
    f = open('layer3.b','rb')
    layer3.b.set_value(cPickle.load(f))
    f.close()
    
    f = open('layer4.W','rb')
    layer4.W.set_value(cPickle.load(f))
    f.close()
    
    f = open('layer4.b','rb')
    layer4.b.set_value(cPickle.load(f))
    f.close()
    

    predictedList = getPofYGivenX(0)
    predictedMoods = predictedList[0].tolist()
    return [predictedMoods.index(max(predictedMoods)),max(predictedMoods)]
def test_gaussian(learning_rate=0.1, n_epochs=1000, nkerns=[16, 512],
            batch_size=200, verbose=False):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (32-5+1 , 32-5+1) = (28, 28)
    # maxpooling reduces this further to (28/2, 28/2) = (14, 14)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 14, 14)

    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 3, 32, 32),
        filter_shape=(nkerns[0], 3, 5, 5),
        poolsize=(2, 2)
    )


    # TODO: Construct the second convolutional pooling layer
    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (14-5+1, 14-5+1) = (10, 10)
    # maxpooling reduces this further to (10/2, 10/2) = (5, 5)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 5, 5)
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 14, 14),
        filter_shape=(nkerns[1], nkerns[0], 5, 5),
        poolsize=(2, 2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 5 * 5,
        n_out=500,
        activation=T.tanh
    )

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(
         input=layer2.output,
         n_in=500,
    n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    layer0.W = [make_Gaussian(size = 5), make_Gaussian(size = 5), make_Gaussian(size = 5)]
    layer0.b = numpy.zeros((nkerns[0],), dtype=theano.config.floatX)

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)
def test_filter(learning_rate=0.1, n_epochs=1000, nkerns=[3, 512],
            batch_size=200, verbose=True):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        # (batch size, num input feature maps,image height, image width)
        image_shape=(batch_size,3,32,32),
        # number of filters, num input feature maps,filter height, filter width)
        filter_shape=(nkerns[0],3,5,5),
        poolsize=(2,2)
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        # (32-5+1)/2
        image_shape=(batch_size,nkerns[0],14,14),
        filter_shape=(nkerns[1],nkerns[0],5,5),
        poolsize=(2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        # (14-5+1)/2
        n_in=nkerns[1] * 5 * 5,
        n_out=500,
        activation=T.nnet.sigmoid
    )

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(
         input=layer2.output,
         n_in=500,
         n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)
    
    mean_w_0 = layer0.W.get_value().mean()

    plt.figure()
    for knkerns0 in range(nkerns[0]):
        for kch in range(3):
            plt.subplot(3,3,knkerns0*3+kch+1)
            plt.imshow(layer0.W.get_value()[knkerns0,kch,:,:])
    plt.title('trained filter')
    
    
    ###########################################################################
    ###########################################################################
    ###########################################################################
    
    filter_shape_input = (nkerns[0],3,5,5)

    pt_input = numpy.zeros((filter_shape_input[2],filter_shape_input[3]))
    pt_input[(filter_shape_input[2]-1)/2,(filter_shape_input[3]-1)/2]=1.0
    
    W = numpy.zeros(filter_shape_input)
    
    from scipy.ndimage.filters import gaussian_filter as gf    
    
    for knkerns0 in range(nkerns[0]):
        for kch in range(3):
            W[knkerns0,kch,:,:]=gf(pt_input,(knkerns0+1.0))
            W[knkerns0,kch,:,:] = W[knkerns0,kch,:,:]/W[knkerns0,kch,:,:].mean()*mean_w_0
    
    W = theano.shared(W,borrow=True)
    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        # (batch size, num input feature maps,image height, image width)
        image_shape=(batch_size,3,32,32),
        # number of filters, num input feature maps,filter height, filter width)
        filter_shape=filter_shape_input,
        poolsize=(2,2)
    )
    layer0.W = W

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        # (32-5+1)/2
        image_shape=(batch_size,nkerns[0],14,14),
        filter_shape=(nkerns[1],nkerns[0],5,5),
        poolsize=(2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        # (14-5+1)/2
        n_in=nkerns[1] * 5 * 5,
        n_out=500,
        activation=T.nnet.sigmoid
    )

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(
         input=layer2.output,
         n_in=500,
         n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    # the param of layer0 is excluded
    params = layer3.params + layer2.params + layer1.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)

    plt.figure()
    for knkerns0 in range(nkerns[0]):
        for kch in range(3):
            plt.subplot(3,3,knkerns0*3+kch+1)
            plt.imshow(layer0.W.get_value()[knkerns0,kch,:,:])
    plt.title('pre-defined filter')
def test_para_num(learning_rate=0.1, n_epochs=1000, nkerns=[16, 512],L1_reg=0.00, L2_reg=0.0001,
             batch_size=128, n_hiddenLayers=2,verbose=True):
    """
    Wrapper function for testing Multi-Stage ConvNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')
    
    ###########################################################################
    ################################## CNN ####################################
    ###########################################################################
    
    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        # (batch size, num input feature maps,image height, image width)
        image_shape=(batch_size,3,32,32),
        # number of filters, num input feature maps,filter height, filter width)
        filter_shape=(nkerns[0],3,5,5),
        poolsize=(2,2)
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        # (32-5+1)/2
        image_shape=(batch_size,nkerns[0],14,14),
        filter_shape=(nkerns[1],nkerns[0],5,5),
        poolsize=(2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        # (14-5+1)/2
        n_in=nkerns[1] * 5 * 5,
        n_out=500,
        activation=T.nnet.sigmoid
    )

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(
         input=layer2.output,
         n_in=500,
         n_out=10)
    
    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)
        
    ###########################################################################
    ################################## MLP ####################################
    ###########################################################################
    
    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    n_hidden = [0,0];
    n_hidden[0]=nkerns[0]*14*14
    n_hidden[1]=nkerns[1]*5*5
    # TODO: construct a neural network, either MLP or CNN.
    classifier = myMLP(
        rng=rng,
        input=x,
        n_in=32*32*3,
        n_hidden=n_hidden,
        n_hiddenLayers=n_hiddenLayers,
        n_out=10
    )

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)
Пример #7
0
def test_dropout(learning_rate=0.1,
                 n_epochs=1000,
                 nkerns=[64, 128],
                 batch_size=120,
                 verbose=False):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels
    testing = T.iscalar('testing')
    testValue = testing
    getTestValue = theano.function([testing], testValue)

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 3, 32, 32),
                                filter_shape=(nkerns[0], 3, 5, 5),
                                poolsize=(2, 2))

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(rng,
                                input=layer0.output,
                                image_shape=(batch_size, nkerns[0], 14, 14),
                                filter_shape=(nkerns[1], nkerns[0], 5, 5),
                                poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    layer2 = DropOut(rng,
                     input=layer2_input,
                     n_in=nkerns[1] * 5 * 5,
                     n_out=batch_size,
                     testing=testing)

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=batch_size, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore')

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore')
    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    grads = T.grad(cost, params)
    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.

    updates = [(param_i, param_i - learning_rate * grad_i)
               for param_i, grad_i in zip(params, grads)]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore',
        allow_input_downcast=True)

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model, n_train_batches,
             n_valid_batches, n_test_batches, n_epochs, verbose)
Пример #8
0
def test_mlp(learning_rate=0.01,
             L1_reg=0.00,
             L2_reg=0.0001,
             n_epochs=1000,
             batch_size=20,
             n_hidden=500,
             verbose=True,
             fileName='predictionsMLP'):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels
    learning_rate = theano.shared(learning_rate)
    testing = T.lscalar('testing')
    testValue = testing
    getTestValue = theano.function([testing], testValue)

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))
    layer0_input = layer0_input.flatten(2)
    # TODO: Construct the first convolutional pooling layer
    layer0 = HiddenLayer(rng,
                         input=layer0_input,
                         n_in=32 * 32 * 3,
                         n_out=n_hidden,
                         activation=T.tanh)

    layer1 = HiddenLayer(rng,
                         input=layer0.output,
                         n_in=n_hidden,
                         n_out=n_hidden,
                         activation=T.tanh)
    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).

    # TODO: construct a fully-connected sigmoidal layer
    layer2 = DropConnect(rng,
                         input=layer1.output,
                         n_in=n_hidden,
                         n_out=batch_size,
                         testing=testing)

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=batch_size, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    print("Model building complete")

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore')

    getPredictedValue = theano.function(
        [index],
        layer3.predictedValue(),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore')

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore')

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params
    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)
    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.

    #updates = [
    #    (param_i, param_i - learning_rate * layer2.maskW.get_value() * grad_i) if (param_i.name == 'WDrop') else (param_i, param_i - learning_rate * layer2.maskb.get_value() * grad_i) if(param_i.name == 'bDrop') else (param_i, param_i - learning_rate * grad_i)
    #    for param_i, grad_i in zip(params, grads)
    #]

    updates = []
    momentum = 0.9
    for param in params:
        param_update = theano.shared(param.get_value() * 0.,
                                     broadcastable=param.broadcastable)
        if (param.name == 'WDrop'):
            updates.append((param, param - learning_rate.get_value().item() *
                            layer2.maskW.get_value() * param_update))
        elif (param.name == 'bDrop'):
            updates.append((param, param - learning_rate.get_value().item() *
                            layer2.maskb.get_value() * param_update))
        else:
            updates.append(
                (param,
                 param - learning_rate.get_value().item() * param_update))
        updates.append(
            (param_update,
             momentum * param_update + (1. - momentum) * T.grad(cost, param)))
    '''
    updates = [
        (param_i, param_i - learning_rate * grad_i) if ((param_i.name == 'WDrop') or (param_i.name == 'bDrop')) else (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]
    '''
    print("Commpiling the train model function")

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size],
            testing: getTestValue(0)
        },
        on_unused_input='ignore',
        allow_input_downcast=True)
    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    predictions = train_nn(train_model, validate_model, test_model,
                           getPredictedValue, n_train_batches, n_valid_batches,
                           n_test_batches, n_epochs, learning_rate, verbose)

    f = open(fileName, 'wb')
    cPickle.dump(predictions, f, protocol=cPickle.HIGHEST_PROTOCOL)
    f.close()
Пример #9
0
def test_convnet(learning_rate=0.1,
                 n_epochs=1000,
                 nkerns=[16, 512, 20],
                 batch_size=200,
                 verbose=False,
                 filter_size=2):
    """
    Wrapper function for testing Multi-Stage ConvNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer:
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 3, 32, 32),
                                filter_shape=(nkerns[0], 3, filter_size,
                                              filter_size),
                                poolsize=(2, 2))

    # TODO: Construct the second convolutional pooling layer
    new_shape = (32 - filter_size + 1) // 2
    layer1 = LeNetConvPoolLayer(rng,
                                input=layer0.output,
                                image_shape=(batch_size, nkerns[0], new_shape,
                                             new_shape),
                                filter_shape=(nkerns[1], nkerns[0],
                                              filter_size, filter_size),
                                poolsize=(2, 2))

    # Combine Layer 0 output and Layer 1 output
    # TODO: downsample the first layer output to match the size of the second
    # layer output.
    # TDOD: change ds
    layer0_output_ds = downsample.max_pool_2d(input=layer0.output,
                                              ds=(2, 2),
                                              ignore_border=True)
    # concatenate layer
    layer2_input = T.concatenate([layer1.output, layer0_output_ds], axis=1)

    # TODO: Construct the third convolutional pooling layer
    new_shape = (new_shape - filter_size + 1) // 2
    layer2 = LeNetConvPoolLayer(rng,
                                input=layer2_input,
                                image_shape=(batch_size, nkerns[0] + nkerns[1],
                                             new_shape, new_shape),
                                filter_shape=(nkerns[2], nkerns[0] + nkerns[1],
                                              filter_size, filter_size),
                                poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[2] * 1 * 1).
    layer3_input = layer2.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    new_shape = (new_shape - filter_size + 1) // 2
    layer3 = HiddenLayer(rng,
                         input=layer3_input,
                         n_in=nkerns[2] * new_shape * new_shape,
                         n_out=500,
                         activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer4.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [(param_i, param_i - learning_rate * grad_i)
               for param_i, grad_i in zip(params, grads)]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    return train_nn(train_model, validate_model, test_model, n_train_batches,
                    n_valid_batches, n_test_batches, n_epochs, verbose)
Пример #10
0
def test_CDNN(learning_rate=0.1,
              n_epochs=1000,
              nkerns=[16, 512],
              batch_size=200,
              verbose=False,
              filter_size=5):
    """
    Wrapper function for testing CNN in cascade with DNN
    """
    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 3, 32, 32),
                                filter_shape=(nkerns[0], 3, filter_size,
                                              filter_size),
                                poolsize=(2, 2))

    # TODO: Construct the second convolutional pooling layer
    new_shape = (32 - filter_size + 1) // 2
    layer1 = LeNetConvPoolLayer(rng,
                                input=layer0.output,
                                image_shape=(batch_size, nkerns[0], new_shape,
                                             new_shape),
                                filter_shape=(nkerns[1], nkerns[0],
                                              filter_size, filter_size),
                                poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    new_factors = (new_shape - filter_size + 1) // 2
    layer2 = HiddenLayer(rng,
                         input=layer2_input,
                         n_in=nkerns[1] * new_factors * new_factors,
                         n_out=500,
                         activation=T.tanh)

    layer3 = HiddenLayer(rng,
                         input=layer2.output,
                         n_in=500,
                         n_out=500,
                         activation=T.tanh)

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer4.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [(param_i, param_i - learning_rate * grad_i)
               for param_i, grad_i in zip(params, grads)]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    return train_nn(train_model, validate_model, test_model, n_train_batches,
                    n_valid_batches, n_test_batches, n_epochs, verbose)
Пример #11
0
def test_lenet(learning_rate=0.1,
               n_epochs=1000,
               nkerns=[16, 512],
               batch_size=200,
               filter_size=5,
               dnn_layers=1,
               n_hidden=500,
               gabor=False,
               lmbda=None,
               verbose=False):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """
    print test_lenet.__name__, nkerns, filter_size, gabor, lmbda

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    if gabor is True:
        # Generate Gabor filters
        filters = build_gabor(filter_size, nkerns[0], lmbda)
        # filters = numpy.array([filters[i][0] for i in range(len(filters))])
        filters = numpy.array([filters[i] for i in range(len(filters))])
        # print filters.shape
        filter_weights = numpy.tile(filters,
                                    (1, 3, 1)).reshape(nkerns[0], 3,
                                                       filter_size,
                                                       filter_size)
        layer0 = LeNetConvPoolLayer(rng,
                                    input=layer0_input,
                                    image_shape=(batch_size, 3, 32, 32),
                                    filter_shape=(nkerns[0], 3, filter_size,
                                                  filter_size),
                                    poolsize=(2, 2),
                                    weights=filter_weights)
        print 'gabor filter weights are working'
    else:
        # TODO: Construct the first convolutional pooling layer
        layer0 = LeNetConvPoolLayer(rng,
                                    input=layer0_input,
                                    image_shape=(batch_size, 3, 32, 32),
                                    filter_shape=(nkerns[0], 3, filter_size,
                                                  filter_size),
                                    poolsize=(2, 2))

    # TODO: Construct the second convolutional pooling layer
    i_s_1 = (32 - filter_size + 1) / 2

    layer1 = LeNetConvPoolLayer(rng,
                                input=layer0.output,
                                image_shape=(batch_size, nkerns[0], i_s_1,
                                             i_s_1),
                                filter_shape=(nkerns[1], nkerns[0],
                                              filter_size, filter_size),
                                poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    i_s_2 = (i_s_1 - filter_size + 1) / 2

    if hasattr(n_hidden, '__iter__'):
        assert (len(n_hidden) == dnn_layers)
    else:
        n_hidden = (n_hidden, ) * dnn_layers

    DNN_Layers = []
    for i in xrange(dnn_layers):
        h_input = layer2_input if i == 0 else DNN_Layers[i - 1].output
        h_in = nkerns[1] * i_s_2 * i_s_2 if i == 0 else n_hidden[i - 1]
        DNN_Layers.append(
            HiddenLayer(rng=rng,
                        input=h_input,
                        n_in=h_in,
                        n_out=n_hidden[i],
                        activation=T.tanh))

    # layer2 = HiddenLayer(
    #     rng,
    #     input=layer2_input,
    #     n_in=nkerns[1] * i_s_2 * i_s_2,
    #     n_out=500,
    #     activation=T.tanh
    # )

    # TODO: classify the values of the fully-connected sigmoidal layer
    LR_Layer = LogisticRegression(input=DNN_Layers[-1].output,
                                  n_in=n_hidden[i],
                                  n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = LR_Layer.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        LR_Layer.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        LR_Layer.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = LR_Layer.params
    for layer in DNN_Layers:
        params += layer.params
    if gabor is True:
        print 'gabor params is workings'
        params += layer1.params
    else:
        params += layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [(param_i, param_i - learning_rate * grad_i)
               for param_i, grad_i in zip(params, grads)]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model, n_train_batches,
             n_valid_batches, n_test_batches, n_epochs, verbose)
Пример #12
0
def test_dropconnect3(learning_rate=0.1, n_epochs=1000, nkerns=[16,64,20],
            batch_size=20, verbose=True, fileName = 'predictionsDropConnect3_Cifar',activation=tanh,fullyconnected=300,p=0.5):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data_cifar()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels
    learning_rate = theano.shared(learning_rate)
    #testing = T.lscalar('testing')
    testing = T.iscalar('testing')
    testValue = testing
    getTestValue = theano.function([testing],testValue)   

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # TODO: Construct the first convolutional pooling layer
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size,3,32,32),
        filter_shape=(nkerns[0],3,5,5),
        poolsize=(2,2),
        activation=tanh
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size,nkerns[0],14,14),
        filter_shape=(nkerns[1],nkerns[0],5,5),
        poolsize=(2,2),
        activation=tanh
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    
    layer2 = LeNetConvPoolLayer(
        rng,
        input=layer1.output,
        image_shape=(batch_size,nkerns[1],5,5),
        filter_shape=(nkerns[2],nkerns[1],2,2),
        poolsize=(2,2),
        activation=tanh
    )

    layer3_input = layer2.output.flatten(2)
    
    layer3 = DropConnect(
        rng,
        input=layer3_input,
        n_in=nkerns[2]*2*2,
        n_out=fullyconnected,
        testing=testing,
        activation=activation,
        p=p
    )

    # TODO: classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(
         input=layer3.output,
         n_in=fullyconnected,
         n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer4.negative_log_likelihood(y)

    print("Model building complete")

   
    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore'
    )
    
    getPredictedValue = theano.function(        
        [index],
        layer4.predictedValue(),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore'
    )
    
    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size],
            testing: getTestValue(1)
        },
        on_unused_input='ignore'
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer4.params+layer3.params  + layer2.params + layer1.params + layer0.params
    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)
    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    
    #updates = [
    #    (param_i, param_i - learning_rate * layer2.maskW.get_value() * grad_i) if (param_i.name == 'WDrop') else (param_i, param_i - learning_rate * layer2.maskb.get_value() * grad_i) if(param_i.name == 'bDrop') else (param_i, param_i - learning_rate * grad_i)
    #    for param_i, grad_i in zip(params, grads)
    #]
    
    updates = []
    momentum = 0.9
    for param in params:
        param_update = theano.shared(param.get_value()*0., broadcastable=param.broadcastable)
        if (param.name == 'WDrop'):
            updates.append((param,param - learning_rate.get_value().item() * layer3.maskW.get_value() * param_update))
        elif(param.name == 'bDrop'):
            updates.append((param,param - learning_rate.get_value().item() * layer3.maskb.get_value() * param_update))
        else:
            updates.append((param,param - learning_rate.get_value().item() * param_update))
        updates.append((param_update, momentum*param_update + (1. - momentum)*T.grad(cost, param)))
    '''
    updates = [
        (param_i, param_i - learning_rate.get_value().item() * grad_i) if ((param_i.name == 'WDrop') or (param_i.name == 'bDrop')) else (param_i, param_i - learning_rate.get_value().item() * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]
    '''
    print("Commpiling the train model function")

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size],
            testing : getTestValue(0)
        },
        on_unused_input='ignore',
        allow_input_downcast=True
    )
    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    predictions = train_nn(train_model, validate_model, test_model, getPredictedValue,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, learning_rate, verbose)

    f = open(fileName, 'wb')
    cPickle.dump(predictions, f, protocol=cPickle.HIGHEST_PROTOCOL)
    f.close()
Пример #13
0
def MY_lenet(learning_rate=0.1,
             n_epochs=200,
             nkerns=[20, 50],
             batch_size=500,
             L1_reg=0.00,
             L2_reg=0.0001):

    rng = numpy.random.RandomState(23455)

    ds_rate = None
    datasets = load_data(ds_rate=ds_rate, theano_shared=False)

    train_set_x, train_set_y = datasets[0]
    train_size = train_set_x.shape
    n_train = train_size[0]
    '''
    print '... Translating images'
    train_set_x_tran = np.empty(train_size)      
    for i in range(n_train):
        img = (np.reshape(train_set_x[i],(3,32,32))).transpose(1,2,0)
        img_tran = translate_image(img)
        train_set_x_tran[i] = np.reshape(img_tran.transpose(2,0,1),(3*32*32))

    print '... Rotating images'
    train_set_x_rota = np.empty(train_size)     
    for i in range(n_train):
        img = (np.reshape(train_set_x[i],(3,32,32))).transpose(1,2,0)
        img_tran = rotate_image(img)
        train_set_x_rota[i] = np.reshape(img_tran.transpose(2,0,1),(3*32*32))
    '''
    print '... Fliping images'
    train_set_x_flip = np.empty(train_size)
    for i in range(n_train):
        img = (np.reshape(train_set_x[i], (3, 32, 32))).transpose(1, 2, 0)
        img_tran = flip_image(img)
        train_set_x_flip[i] = np.reshape(img_tran.transpose(2, 0, 1),
                                         (3 * 32 * 32))
    '''
    print '... Ennoising images'
    train_set_x_nois = np.empty(train_size)
    for i in range(n_train):
        img = (np.reshape(train_set_x[i],(3,32,32))).transpose(1,2,0)
        img_tran = noise_injection(img)
        train_set_x_aug[i] = np.reshape(img_tran.transpose(2,0,1),(3*32*32))
    '''

    train_set_x = np.concatenate(
        (
            train_set_x,
            #train_set_x_tran,
            #train_set_x_rota,
            train_set_x_flip),
        axis=0)
    train_set_y = np.concatenate(
        (
            train_set_y,
            #train_set_y,
            #train_set_y,
            train_set_y),
        axis=0)

    datasets[0] = [train_set_x, train_set_y]

    train_set_x, train_set_y = shared_dataset(datasets[0])
    valid_set_x, valid_set_y = shared_dataset(datasets[1])
    test_set_x, test_set_y = shared_dataset(datasets[2])

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels
    training_enabled = T.iscalar(
        'training_enabled'
    )  # pseudo boolean for switching between training and prediction

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (28, 28) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 3, 32, 32),
                                filter_shape=(nkerns[0], 3, 3, 3),
                                poolsize=(2, 2))
    #print 'layer0.output.shape ='
    #print layer0.output.shape.eval({x: np.random.rand(2,2).astype(dtype=theano.config.floatX)})

    layerbn = BatchNormalization(input_shape=(batch_size, nkerns[0], 15, 15),
                                 mode=1,
                                 momentum=0.9)
    layerbn_output = layerbn.get_result(layer0.output)
    #print 'layerbn_output.shape ='
    #print layerbn_output.shape.eval({x: np.random.rand(2,2).astype(dtype=theano.config.floatX)})

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
    layer1 = LeNetConvPoolLayer(rng,
                                input=layerbn_output,
                                image_shape=(batch_size, nkerns[0], 15, 15),
                                filter_shape=(nkerns[1], nkerns[0], 3, 3),
                                poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = DropoutHiddenLayer(rng,
                                is_train=training_enabled,
                                input=layer2_input,
                                n_in=nkerns[1] * 6 * 6,
                                n_out=4096,
                                activation=T.nnet.relu)

    # construct a fully-connected sigmoidal layer
    layer3 = DropoutHiddenLayer(rng,
                                is_train=training_enabled,
                                input=layer2.output,
                                n_in=4096,
                                n_out=2048,
                                activation=T.nnet.relu)

    # construct a fully-connected sigmoidal layer
    layer4 = DropoutHiddenLayer(rng,
                                is_train=training_enabled,
                                input=layer3.output,
                                n_in=2048,
                                n_out=1024,
                                activation=T.nnet.relu)

    # construct a fully-connected sigmoidal layer
    layer5 = DropoutHiddenLayer(rng,
                                is_train=training_enabled,
                                input=layer4.output,
                                n_in=1024,
                                n_out=512,
                                activation=T.nnet.relu)

    # classify the values of the fully-connected sigmoidal layer
    layer6 = LogisticRegression(input=layer5.output, n_in=512, n_out=10)

    # L1 norm ; one regularization option is to enforce L1 norm to
    # be small
    L1 = (abs(layer2.W).sum() + abs(layer3.W).sum() + abs(layer4.W).sum() +
          abs(layer5.W).sum() + abs(layer6.W).sum())

    # square of L2 norm ; one regularization option is to enforce
    # square of L2 norm to be small
    L2_sqr = ((layer2.W**2).sum() + (layer3.W**2).sum() + (layer4.W**2).sum() +
              (layer5.W**2).sum() + (layer6.W**2).sum())

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (layer6.negative_log_likelihood(y) + L1_reg * L1 + L2_reg * L2_sqr)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer6.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size],
            training_enabled: numpy.cast['int32'](0)
        })

    validate_model = theano.function(
        [index],
        layer6.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size],
            training_enabled: numpy.cast['int32'](0)
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer6.params + layer5.params + layer4.params + layer3.params + layer2.params + layer1.params + layer0.params
    '''
    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]
    '''

    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs
    momentum = theano.shared(numpy.cast[theano.config.floatX](0.5),
                             name='momentum')
    updates = []
    for param in params:
        param_update = theano.shared(param.get_value() *
                                     numpy.cast[theano.config.floatX](0.))
        updates.append((param, param - learning_rate * param_update))
        updates.append((param_update, momentum * param_update +
                        (numpy.cast[theano.config.floatX](1.) - momentum) *
                        T.grad(cost, param)))

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size],
            training_enabled: numpy.cast['int32'](1)
        })
    # end-snippet-1

    ###############
    # TRAIN MODEL #
    ###############
    train_nn(train_model,
             validate_model,
             test_model,
             n_train_batches,
             n_valid_batches,
             n_test_batches,
             n_epochs,
             verbose=True)
def test_emotionTraining(learning_rate=0.1, n_epochs=1000, nkerns=[16, 512, 20],
        batch_size=200, verbose=True):
    """
    Wrapper function for testing Multi-Stage ConvNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """

    rng = numpy.random.RandomState(23455)

    datasets = loadData()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    #Make learning rate a theano shared variable 
    learning_rate = theano.shared(learning_rate)
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 1 * 48 * 48)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, 48, 48))
    
    

    # TODO: Construct the first convolutional pooling layer:
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape= (batch_size, 1, 48, 48),
        filter_shape= (nkerns[0],1,3,3),
        poolsize= (2,2)
    )

    # TODO: Construct the second convolutional pooling layer
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape= (batch_size, nkerns[0], 23, 23) ,
        filter_shape= (nkerns[1],nkerns[0],4,4),
        poolsize= (2,2)
    )

    # TODO: Construct the third convolutional pooling layer
    layer2 = LeNetConvPoolLayer(
        rng,
        input=layer1.output,
        image_shape= (batch_size,nkerns[1],10,10),
        filter_shape= (nkerns[2],nkerns[1],3,3),
        poolsize= (2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[2] * 1 * 1).
    layer3_input = layer2.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer3 = HiddenLayer(
        rng,
        input=layer3_input,
        n_in=nkerns[2] * 4 * 4,
        n_out= batch_size,
        activation=T.tanh
    )

    # classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output,
        n_in= batch_size,
        n_out=7)

    # the cost we minimize during training is the NLL of the model
    cost = layer4.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = layer0.params + layer1.params + layer2.params + layer3.params + layer4.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate.get_value().item() * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    getPofYGivenX = theano.function(
        [index],
        layer4.pOfYGivenX(),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        },
        on_unused_input='ignore'
    ) 

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, learning_rate, verbose)
    print('Training the model complete')
    

    f1 = open('layer0.W', 'wb')
    cPickle.dump(layer0.W.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer0.b', 'wb')
    cPickle.dump(layer0.b.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer1.W', 'wb')
    cPickle.dump(layer1.W.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer1.b', 'wb')
    cPickle.dump(layer1.b.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer2.W', 'wb')
    cPickle.dump(layer2.W.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer2.b', 'wb')
    cPickle.dump(layer2.b.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer3.W', 'wb')
    cPickle.dump(layer3.W.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer3.b', 'wb')
    cPickle.dump(layer3.b.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()    
    f1 = open('layer4.W', 'wb')
    cPickle.dump(layer4.W.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()
    f1 = open('layer4.b', 'wb')
    cPickle.dump(layer4.b.get_value(), f1, protocol=cPickle.HIGHEST_PROTOCOL)
    f1.close()

    print("Saving the model complete")
    
    predictedList = getPofYGivenX(1)
    
    print("List of probabilities predicted = " + str(predictedList))
def test_lenet(learning_rate=0.1, n_epochs=1000, nkerns=[16, 512],
            batch_size=200, filter_size=5, dnn_layers=1, n_hidden=500, gabor=False, lmbda=None, verbose=False):
    """
    Wrapper function for testing LeNet on SVHN dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_szie: number of examples in minibatch.

    :type verbose: boolean
    :param verbose: to print out epoch summary or not to.

    """
    print test_lenet.__name__, nkerns, filter_size, gabor, lmbda

    rng = numpy.random.RandomState(23455)

    datasets = load_data()

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches //= batch_size
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 3 * 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 3, 32, 32))

    if gabor is True:
        # Generate Gabor filters
        filters = build_gabor(filter_size, nkerns[0], lmbda)
        # filters = numpy.array([filters[i][0] for i in range(len(filters))])
        filters = numpy.array([filters[i] for i in range(len(filters))])
        # print filters.shape
        filter_weights = numpy.tile(filters, (1, 3, 1)).reshape(nkerns[0], 3, filter_size, filter_size)
        layer0 = LeNetConvPoolLayer(
            rng,
            input=layer0_input,
            image_shape=(batch_size, 3, 32, 32),
            filter_shape=(nkerns[0], 3, filter_size, filter_size),
            poolsize=(2,2),
            weights = filter_weights
        )
        print 'gabor filter weights are working'
    else:
        # TODO: Construct the first convolutional pooling layer
        layer0 = LeNetConvPoolLayer(
            rng,
            input=layer0_input,
            image_shape=(batch_size, 3, 32, 32),
            filter_shape=(nkerns[0], 3, filter_size, filter_size),
            poolsize=(2,2)
        )

    # TODO: Construct the second convolutional pooling layer
    i_s_1 = (32 - filter_size + 1) / 2

    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], i_s_1, i_s_1),
        filter_shape=(nkerns[1], nkerns[0], filter_size, filter_size),
        poolsize=(2,2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    layer2_input = layer1.output.flatten(2)

    # TODO: construct a fully-connected sigmoidal layer
    i_s_2 = (i_s_1 - filter_size + 1) / 2

    if hasattr(n_hidden, '__iter__'):
        assert(len(n_hidden) == dnn_layers)
    else:
        n_hidden = (n_hidden,)*dnn_layers

    DNN_Layers = []
    for i in xrange(dnn_layers):
        h_input = layer2_input if i == 0 else DNN_Layers[i-1].output
        h_in = nkerns[1] * i_s_2 * i_s_2 if i == 0 else n_hidden[i-1]
        DNN_Layers.append(
            HiddenLayer(
                rng=rng,
                input=h_input,
                n_in=h_in,
                n_out=n_hidden[i],
                activation=T.tanh
        ))

    # layer2 = HiddenLayer(
    #     rng,
    #     input=layer2_input,
    #     n_in=nkerns[1] * i_s_2 * i_s_2,
    #     n_out=500,
    #     activation=T.tanh
    # )

    # TODO: classify the values of the fully-connected sigmoidal layer
    LR_Layer = LogisticRegression(
        input=DNN_Layers[-1].output,
        n_in=n_hidden[i],
        n_out=10
    )

    # the cost we minimize during training is the NLL of the model
    cost = LR_Layer.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        LR_Layer.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        LR_Layer.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # TODO: create a list of all model parameters to be fit by gradient descent
    params = LR_Layer.params
    for layer in DNN_Layers:
        params += layer.params
    if gabor is True:
        print 'gabor params is workings'
        params += layer1.params
    else:
        params += layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    train_nn(train_model, validate_model, test_model,
        n_train_batches, n_valid_batches, n_test_batches, n_epochs, verbose)