def regression(X, Y, X_out, Y_out, l, ts='linear'): X = transform(X, ts) X_out = transform(X_out, ts) w = weightDecayRegression((X, Y), l) # print w return classificationError((X, Y), w), classificationError((X_out, Y_out), w)
def problem1(): name = ['c://users//mark//in.dta', 'c://users//mark//out.dta'] in_data = dataSet(readIn(name[0])) out_data = dataSet(readIn(name[1])) X, Y = in_data print 'Problem 1, 2' for k in (3, 4, 5, 6, 7): X_t, Y_t = X[:25, :k+1], Y[:25] X_v, Y_v = X[25:, :k+1], Y[25:] w = regression((X_t, Y_t)) print k, classificationError((X_v, Y_v), w), classificationError((out_data[0][:, :k+1], out_data[1]) , w) print 'Problem 3, 4' for k in (3, 4, 5, 6, 7): X_t, Y_t = X[:25, :k+1], Y[:25] X_v, Y_v = X[25:, :k+1], Y[25:] w = regression((X_v, Y_v)) print k, classificationError((X_t, Y_t), w), classificationError((out_data[0][:, :k+1], out_data[1]) , w)
def problem1(): name = ['c://users//mark//in.dta', 'c://users//mark//out.dta'] in_data = dataSet(readIn(name[0])) out_data = dataSet(readIn(name[1])) X, Y = in_data print 'Problem 1, 2' for k in (3, 4, 5, 6, 7): X_t, Y_t = X[:25, :k + 1], Y[:25] X_v, Y_v = X[25:, :k + 1], Y[25:] w = regression((X_t, Y_t)) print k, classificationError((X_v, Y_v), w), classificationError( (out_data[0][:, :k + 1], out_data[1]), w) print 'Problem 3, 4' for k in (3, 4, 5, 6, 7): X_t, Y_t = X[:25, :k + 1], Y[:25] X_v, Y_v = X[25:, :k + 1], Y[25:] w = regression((X_v, Y_v)) print k, classificationError((X_t, Y_t), w), classificationError( (out_data[0][:, :k + 1], out_data[1]), w)