def test_dimensionality(): feature_list = [ (features.StrokeCount(), 1), ( features.ConstantPointCoordinates(strokes=4, points_per_stroke=20, fill_empty_with=0), 160, ), ( features.ConstantPointCoordinates(strokes=0, points_per_stroke=20, fill_empty_with=0), 60, ), ( features.ConstantPointCoordinates(strokes=0, points_per_stroke=20, pen_down=False), 40, ), (features.AspectRatio(), 1), (features.Width(), 1), (features.Height(), 1), (features.Time(), 1), (features.CenterOfMass(), 2), ] for feat, dimension in feature_list: assert feat.get_dimension() == dimension
def dimension_test(): l = [(features.ConstantPointCoordinates(), 160), (features.FirstNPoints(), 162), # TODO: Check (features.StrokeCount(), 1), (features.Ink(), 1) ] for alg, dimension in l: nose.tools.assert_equal(alg.get_dimension(), dimension)
def repr_and_str_test(): l = [features.ConstantPointCoordinates(), features.FirstNPoints(), features.StrokeCount(), features.Ink() ] for alg in l: str(alg) repr(alg)
def test_dimension(): algorithms = [ (features.ConstantPointCoordinates(), 160), (features.FirstNPoints(), 162), # TODO: Check (features.StrokeCount(), 1), (features.Ink(), 1), ] for algorithm, dimension in algorithms: assert algorithm.get_dimension() == dimension
def test_repr_and_str(): algorithms = [ features.ConstantPointCoordinates(), features.FirstNPoints(), features.StrokeCount(), features.Ink(), ] for algorithm in algorithms: str(algorithm) repr(algorithm)
def test_prepare_dataset(): """Test create_ffiles.prepare_dataset.""" dataset = [] for i in range(200): dataset.append({ "handwriting": th.get_symbol_as_handwriting(97705), "formula_id": 42 }) # dataset[-1]['handwriting'].formula_id = 42 formula_id2index = {} formula_id2index[42] = 1 feature_list = [features.StrokeCount()] is_traindata = False create_ffiles.prepare_dataset(dataset, formula_id2index, feature_list, is_traindata)
def feature_detection_test(): l = [{'StrokeCount': None}, {'ConstantPointCoordinates': [{'strokes': 4}, {'points_per_stroke': 81}, {'fill_empty_with': 0}, {'pen_down': False}] } ] correct = [features.StrokeCount(), features.ConstantPointCoordinates(strokes=4, points_per_stroke=81, fill_empty_with=0, pen_down=False)] feature_list = features.get_features(l) # TODO: Not only compare lengths of lists but actual contents. nose.tools.assert_equal(len(feature_list), len(correct))
def features_detection_test(): feature_queue = [{ 'StrokeCount': None }, { 'ConstantPointCoordinates': [{ 'strokes': 4, 'points_per_stroke': 20, 'fill_empty_with': 0 }] }] correct = [ features.StrokeCount(), features.ConstantPointCoordinates(strokes=4, points_per_stroke=20, fill_empty_with=0) ] feature_list = features.get_features(feature_queue) # TODO: Not only compare lengths of lists but actual contents. nose.tools.assert_equal(len(feature_list), len(correct))
def print_featurelist_test(): """Test features.print_featurelist.""" feature_list = [ features.StrokeCount(), features.ConstantPointCoordinates(strokes=4, points_per_stroke=20, fill_empty_with=0), features.ConstantPointCoordinates(strokes=0, points_per_stroke=20, fill_empty_with=0), features.ConstantPointCoordinates(strokes=0, points_per_stroke=20, pen_down=False), features.AspectRatio(), features.Width(), features.Height(), features.Time(), features.CenterOfMass() ] features.print_featurelist(feature_list)
def test_feature_detection(): queue = [ {"StrokeCount": None}, { "ConstantPointCoordinates": [ {"strokes": 4}, {"points_per_stroke": 81}, {"fill_empty_with": 0}, {"pen_down": False}, ] }, ] correct = [ features.StrokeCount(), features.ConstantPointCoordinates( strokes=4, points_per_stroke=81, fill_empty_with=0, pen_down=False ), ] feature_list = features.get_features(queue) # TODO: Not only compare lengths of lists but actual contents. assert len(feature_list) == len(correct)
def test_features_detection(): feature_queue = [ { "StrokeCount": None }, { "ConstantPointCoordinates": [{ "strokes": 4, "points_per_stroke": 20, "fill_empty_with": 0 }] }, ] correct = [ features.StrokeCount(), features.ConstantPointCoordinates(strokes=4, points_per_stroke=20, fill_empty_with=0), ] feature_list = features.get_features(feature_queue) # TODO: Not only compare lengths of lists but actual contents. assert len(feature_list) == len(correct)
def stroke_count_test(): feature_list = [features.StrokeCount()] a = testhelper.get_symbol_as_handwriting(97705) nose.tools.assert_equal(a.feature_extraction(feature_list), [1])
def test_stroke_count(): feature_list = [features.StrokeCount()] a = testhelper.get_symbol_as_handwriting(97705) assert a.feature_extraction(feature_list) == [1]