def toFn(a, b): return SLICE.from_py(slice(a, b, 1))
def downtoFn(a, b): return SLICE.from_py(slice(a, b, -1))
def __getitem__(self, key): """ [] operator :attention: Table below is for litle endian bit order (MSB:LSB) which is default. This is **reversed** as it is in pure python where it is [0, len(self)]. :attention: slice on slice f signal is automatically reduced to single slice +-----------------------------+----------------------------------------------------------------------------------+ | a[up:low] | items low through up; a[16:8] selects upper byte from 16b vector a | +-----------------------------+----------------------------------------------------------------------------------+ | a[up:] | low is automatically substituted with 0; a[8:] will select lower 8 bits | +-----------------------------+----------------------------------------------------------------------------------+ | a[:end] | up is automatically substituted; a[:8] will select upper byte from 16b vector a | +-----------------------------+----------------------------------------------------------------------------------+ | a[:], a[-1], a[-2:], a[:-2] | raises NotImplementedError (not implemented due to complicated support in hdl) | +-----------+----------------------------------------------------------------------------------------------------+ """ st = self._dtype length = st.bit_length() if length == 1 and not st.force_vector: # assert not indexing on single bit raise TypeError("indexing on single bit") if isinstance(key, slice): key = slice_to_SLICE(key, length) isSLICE = True else: isSLICE = isinstance(key, Slice.getValueCls()) if isSLICE: # :note: downto notation start = key.val.start stop = key.val.stop if key.val.step != -1: raise NotImplementedError() startIsVal = isinstance(start, HValue) stopIsVal = isinstance(stop, HValue) indexesareHValues = startIsVal and stopIsVal else: key = toHVal(key, INT) iamVal = isinstance(self, HValue) iAmResultOfIndexing = (not iamVal and len(self.drivers) == 1 and isinstance(self.origin, Operator) and self.origin.operator == AllOps.INDEX) Bits = self._dtype.__class__ if isSLICE: if indexesareHValues and start.val == length and stop.val == 0: # selecting all bits no conversion needed return self if iAmResultOfIndexing: # try reduce self and parent slice to one original, parentIndex = self.origin.operands if isinstance(parentIndex._dtype, Slice): parentLower = parentIndex.val.stop start = start + parentLower stop = stop + parentLower return original[start:stop] # check start boundaries if startIsVal: _start = int(start) if _start < 0 or _start > length: raise IndexError(_start, length) # check end boundaries if stopIsVal: _stop = int(stop) if _stop < 0 or _stop > length: raise IndexError(_stop, length) # check width of selected range if startIsVal and stopIsVal and _start - _stop <= 0: raise IndexError(_start, _stop) if iamVal: if isinstance(key, SLICE.getValueCls()): key = key.val v = Bits3val.__getitem__(self, key) if v._dtype.bit_length() == 1 and not v._dtype.force_vector: assert v._dtype is not self._dtype v._dtype.force_vector = True return v else: key = SLICE.from_py(slice(start, stop, -1)) _resWidth = start - stop resT = Bits(bit_length=_resWidth, force_vector=True, signed=st.signed, negated=st.negated) elif isinstance(key, Bits.getValueCls()): if key._is_full_valid(): # check index range _v = int(key) if _v < 0 or _v > length - 1: raise IndexError(_v) if iAmResultOfIndexing: original, parentIndex = self.origin.operands if isinstance(parentIndex._dtype, Slice): parentLower = parentIndex.val.stop return original[parentLower + _v] if iamVal: return Bits3val.__getitem__(self, key) resT = BIT elif isinstance(key, RtlSignalBase): t = key._dtype if isinstance(t, Slice): resT = Bits(bit_length=key.staticEval()._size(), force_vector=True, signed=st.signed, negated=st.negated) elif isinstance(t, Bits): resT = BIT else: raise TypeError("Index operation not implemented" " for index of type %r" % (t)) else: raise TypeError("Index operation not implemented for index %r" % (key)) if st.negated and resT is BIT: resT = BIT_N return Operator.withRes(AllOps.INDEX, [self, key], resT)
from hwt.hdl.value import Value, areValues from hwt.hdl.types.defs import BOOL, INT, SLICE from hwt.hdl.operator import Operator from hwt.hdl.operatorDefs import AllOps from hwt.hdl.types.typeCast import toHVal from hwt.hdl.types.integer import Integer from operator import pow, eq BoolVal = BOOL.getValueCls() SliceVal = SLICE.getValueCls() def intOp__val(self, other, resT, evalFn): v = evalFn(self.val, other.val) vldMask = int(self.vldMask and other.vldMask) updateTime = max(self.updateTime, other.updateTime) return resT.getValueCls()(v, resT, vldMask, updateTime) def intOp(self, other, op, resT, evalFn=None): if evalFn is None: evalFn = op._evalFn other = toHVal(other)._auto_cast(INT) if areValues(self, other): return intOp__val(self, other, resT, evalFn) else: return Operator.withRes(op, [self, other], resT) def intAritmeticOp(self, other, op):
def resolve_final_parts_from_splitpoints_and_parts(signal_parts): # :type: Dict[RtlSignal, Dict[Tuple[Tuple[int, int], ...], Union[HValue, RtlSignal]]] final_signal_parts = {} # split part intervals to non-overlapping chunks for s, parts in sorted(signal_parts.items(), key=lambda x: RtlSignal_sort_key(x[0])): split_point = resolve_splitpoints(s, parts) split_point = sorted(split_point) # prepare part signals new_parts = [] new_parts_dict = {} split_i = 0 end = 0 # :attention: parts are likely to contain parts with same indexes for indexes, can_directly_replace_with_src_expr, src in sorted( parts, key=lambda x: x[0]): if len(indexes) != 1: raise NotImplementedError() i = indexes[0] split_p = split_point[split_i] if isinstance(i, BitsVal): low = int(i) high = low + 1 index_key = ((high, low), ) else: assert isinstance(i, SliceVal), (s, i) if i.val.step != -1: raise NotImplementedError(s, i) high, low = int(i.val.start), int(i.val.stop) index_key = ((high, low), ) while split_p < low: # some parts at the beginning are skiped # that means that that part is not driven by anything # and we need to check default and nop value part_indexes = (SLICE.from_py(slice(low, split_p, -1)), ) _src = construct_tmp_dst_sig_for_slice(s, part_indexes, None, False) new_parts.append(_src) _index_key = ((low, split_p), ) new_parts_dict[_index_key] = _src, True split_i += 1 split_p = split_point[split_i] this_start_split_p_i = split_i if split_p > low: # some parts at the beginning were already resolved # This can happen if there was some part which started on some <= index and overlaps with this part. try: _, _can_directly_replace_with_src_expr = new_parts_dict[ index_key] assert not _can_directly_replace_with_src_expr, (s, index_key) # was already resolved and checked no need to check it again continue except KeyError: pass for i in range(split_i, -1, -1): _sp = split_point[i] if _sp == low: this_start_split_p_i = i assert split_point[this_start_split_p_i] == low # just at the start of this slice next_split_p = split_point[this_start_split_p_i + 1] assert next_split_p <= high, "The next split point can be at most end of current part" if next_split_p == high: assert this_start_split_p_i == split_i, "We should see this part for the first time or the split_i should already be higher" # all bits on this slice are alwyas driven at once, we can instantiate whole part assert split_p == low _src = construct_tmp_dst_sig_for_slice( s, indexes, src, not can_directly_replace_with_src_expr) new_parts.append(_src) assert index_key not in new_parts_dict, (s, index_key) new_parts_dict[ index_key] = _src, can_directly_replace_with_src_expr split_i += 1 else: # list of part keys for later search _split_parts = [] prev_sp = split_point[this_start_split_p_i] dst_offset = low assert not can_directly_replace_with_src_expr # continue instanciating parts until we reach the end of this part for sp_i, sp in zip( range(this_start_split_p_i + 1, len(split_point)), islice(split_point, this_start_split_p_i + 1, None)): # need to generate sub slice # because this slice has actually multiple individualy driven parts # we need to generate all slice parts because there could be a case where only some sub parts are # driven elsewhere and we would othervise resolve those segments as a constantly driven # but they are in fact driven from this slice if sp > high: break part_key = ((sp, prev_sp), ) if sp_i <= split_i: # check if the slice is not driven from some top level constant assignment # which would result is multiple drivers of this slice assert src is None existing_part, _can_directly_replace_with_src_expr = new_parts_dict[ part_key] assert not _can_directly_replace_with_src_expr, ( s, low, high, existing_part) assert not can_directly_replace_with_src_expr, ( s, low, high, existing_part) assert isinstance(existing_part, RtlSignal), (s, low, high, existing_part) else: assert sp_i == split_i + 1, (s, sp_i, split_i) # get actual input signal if src is None: _src = None else: _src = src[sp - dst_offset:prev_sp - dst_offset] part_indexes = (SLICE.from_py(slice(sp, prev_sp, -1)), ) _src = construct_tmp_dst_sig_for_slice( s, part_indexes, _src, True) new_parts.append(_src) new_parts_dict[ part_key] = _src, can_directly_replace_with_src_expr split_i += 1 _split_parts.append(part_key) prev_sp = sp new_parts_dict[index_key] = _split_parts, False end = max(end, high) if end < split_point[-1]: # something unconnected at the end high, low = split_point[-1], end part_indexes = (SLICE.from_py(slice(high, low, -1)), ) _src = construct_tmp_dst_sig_for_slice(s, part_indexes, None, False) new_parts.append(_src) index_key = ((high, low), ) new_parts_dict[index_key] = _src, True # construct assignment of concatenation from all parts assert new_parts, (s, parts) s(Concat(*reversed(new_parts))) final_signal_parts[s] = new_parts_dict return final_signal_parts