def __init__(self,
                 autocollect=True,
                 label_positions='brunel-py-pos',
                 **kwargs):
        '''
        
        Parameters
        ----------
        autocollect : bool
            whether or not to automatically gather gdf file output
        label_positions : str
            file prefix of position txt files
        **kwargs :
            parameters for parent class hybridLFPy.CachedNetwork
        '''
        #initialize parent class
        CachedNetwork.__init__(self, autocollect=autocollect, **kwargs)

        #set class attributes
        self.label_positions = label_positions

        #load positions and set them as attributes
        self.positions = {}
        for X in self.X:
            fname = os.path.join(self.spike_output_path, 'all_positions.h5')
            if os.path.isfile(fname):
                f = h5py.File(fname)
                #set positions, units from mm to mum !!!!!!!!!!!!!!!!!!!!!!!!!!!
                self.positions[X] = f[X].value[:, 1:] * 1E3
                f.close()
            else:
                fnames = glob(
                    os.path.join(self.spike_output_path,
                                 label_positions + '*{0}*txt'.format(X)))
                for i, fname in enumerate(fnames):
                    if i == 0:
                        tmp_pos = np.loadtxt(fname, dtype=object)
                    else:
                        tmp_pos = np.vstack(
                            (tmp_pos, np.loadtxt(fname, dtype=object)))
                #sorting array
                argsort = np.argsort(tmp_pos[:, 0].astype(int))

                #set positions
                self.positions[X] = tmp_pos[argsort, 1:].astype(float)
Пример #2
0
def plot_multi_scale_output_a(fig):    
    #get the mean somatic currents and voltages,
    #write pickles if they do not exist:
    if not os.path.isfile(os.path.join(params.savefolder, 'data_analysis',
                                       'meanInpCurrents.pickle')):
        meanInpCurrents = getMeanInpCurrents(params, params.n_rec_input_spikes,
                                        os.path.join(params.spike_output_path,
                                                     'population_input_spikes'))
        f = file(os.path.join(params.savefolder, 'data_analysis',
                              'meanInpCurrents.pickle'), 'wb')
        pickle.dump(meanInpCurrents, f)
        f.close()
    else:
        f = file(os.path.join(params.savefolder, 'data_analysis',
                              'meanInpCurrents.pickle'), 'rb')
        meanInpCurrents = pickle.load(f)
        f.close()

    if not os.path.isfile(os.path.join(params.savefolder, 'data_analysis',
                                       'meanVoltages.pickle')):
        meanVoltages = getMeanVoltages(params, params.n_rec_voltage,
                                       os.path.join(params.spike_output_path,
                                                       'voltages'))
        f = file(os.path.join(params.savefolder, 'data_analysis',
                              'meanVoltages.pickle'), 'wb')
        pickle.dump(meanVoltages, f)
        f.close()
    else:
        f = file(os.path.join(params.savefolder, 'data_analysis',
                              'meanVoltages.pickle'), 'rb')
        meanVoltages = pickle.load(f)
        f.close()
    

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    show_ax_labels = True
    show_insets = False

    transient=200
    T=[800, 1000]
    T_inset=[900, 920]

    sep = 0.025/2 #0.017
    
    left = 0.075
    bottom = 0.55
    top = 0.975
    right = 0.95
    axwidth = 0.16
    numcols = 4
    insetwidth = axwidth/2
    insetheight = 0.5
    
    lefts = np.linspace(left, right-axwidth, numcols)
    
    
    #fig = plt.figure()
    ############################################################################ 
    # A part, plot spike rasters
    ############################################################################
    ax1 = fig.add_axes([lefts[0], bottom, axwidth, top-bottom])
    #fig.text(0.005,0.95,'a',fontsize=8, fontweight='demibold')
    if show_ax_labels:
        phlp.annotate_subplot(ax1, ncols=4, nrows=1.02, letter='A', )
    ax1.set_title('network activity')
    plt.locator_params(nbins=4)
    
    x, y = networkSim.get_xy(T, fraction=1)
    networkSim.plot_raster(ax1, T, x, y, markersize=0.2, marker='_', alpha=1.,
                           legend=False, pop_names=True, rasterized=False)
    phlp.remove_axis_junk(ax1)
    ax1.set_xlabel(r'$t$ (ms)', labelpad=0.1)
    ax1.set_ylabel('population', labelpad=0.1)
    
    # Inset
    if show_insets:
        ax2 = fig.add_axes([lefts[0]+axwidth-insetwidth, top-insetheight, insetwidth, insetheight])
        plt.locator_params(nbins=4)
        x, y = networkSim.get_xy(T_inset, fraction=0.4)
        networkSim.plot_raster(ax2, T_inset, x, y, markersize=0.25, alpha=1.,
                               legend=False)
        phlp.remove_axis_junk(ax2)
        ax2.set_xticks(T_inset)
        ax2.set_yticks([])
        ax2.set_yticklabels([])
        ax2.set_ylabel('')
        ax2.set_xlabel('')

    
    ############################################################################
    # B part, plot firing rates
    ############################################################################
    
    nrows = len(networkSim.X)-1
    high = top
    low = bottom
    thickn = (high-low) / nrows - sep
    bottoms = np.linspace(low, high-thickn, nrows)[::-1]
    
    x, y = networkSim.get_xy(T, fraction=1)  
    
    #dummy ax to put label in correct location
    ax_ = fig.add_axes([lefts[1], bottom, axwidth, top-bottom])
    ax_.axis('off')
    if show_ax_labels:
        phlp.annotate_subplot(ax_, ncols=4, nrows=1, letter='B')        
    
    for i, X in enumerate(networkSim.X[:-1]):
        ax3 = fig.add_axes([lefts[1], bottoms[i], axwidth, thickn])
        plt.locator_params(nbins=4)
        phlp.remove_axis_junk(ax3)
        networkSim.plot_f_rate(ax3, X, i, T, x, y, yscale='linear',
                               plottype='fill_between', show_label=False,
                               rasterized=False)
        ax3.yaxis.set_major_locator(plt.MaxNLocator(3))
        if i != nrows -1:    
            ax3.set_xticklabels([])
    
        if i == 3:
            ax3.set_ylabel(r'(s$^{-1}$)', labelpad=0.1)
    
        if i == 0:
            ax3.set_title(r'firing rates ')

        ax3.text(0, 1, X,
            horizontalalignment='left',
            verticalalignment='bottom',
            transform=ax3.transAxes)
        
    for loc, spine in ax3.spines.iteritems():
        if loc in ['right', 'top']:
            spine.set_color('none')            
    ax3.xaxis.set_ticks_position('bottom')
    ax3.yaxis.set_ticks_position('left')
    ax3.set_xlabel(r'$t$ (ms)', labelpad=0.1)

      
    ############################################################################
    # C part, plot somatic synapse input currents population resolved 
    ############################################################################
        
    #set up subplots
    nrows = len(meanInpCurrents.keys())
    high = top
    low = bottom
    thickn = (high-low) / nrows - sep
    bottoms = np.linspace(low, high-thickn, nrows)[::-1]

    ax_ = fig.add_axes([lefts[2], bottom, axwidth, top-bottom])
    ax_.axis('off')
    if show_ax_labels:
        phlp.annotate_subplot(ax_, ncols=4, nrows=1, letter='C')        
    
    for i, Y in enumerate(params.Y):
        value = meanInpCurrents[Y]
        
        tvec = value['tvec']
        inds = (tvec <= T[1]) & (tvec >= T[0])
        ax3 = fig.add_axes([lefts[2], bottoms[i], axwidth, thickn])
        plt.locator_params(nbins=4)

        if i == 0:
            ax3.plot(tvec[inds][::10],
                     helpers.decimate(value['E'][inds], 10),
                     'k' if analysis_params.bw else analysis_params.colorE, #lw=0.75, #'r',
                     rasterized=False,label='exc.')
            ax3.plot(tvec[inds][::10],
                     helpers.decimate(value['I'][inds], 10),
                     'gray' if analysis_params.bw else analysis_params.colorI, #lw=0.75, #'b',
                     rasterized=False,label='inh.')
            ax3.plot(tvec[inds][::10],
                     helpers.decimate(value['E'][inds] + value['I'][inds], 10),
                     'k', lw=1, rasterized=False, label='sum')
        else:
            ax3.plot(tvec[inds][::10], helpers.decimate(value['E'][inds], 10),
                     'k' if analysis_params.bw else analysis_params.colorE, #lw=0.75, #'r',
                     rasterized=False)
            ax3.plot(tvec[inds][::10], helpers.decimate(value['I'][inds], 10),
                     'gray' if analysis_params.bw else analysis_params.colorI, #lw=0.75, #'b',
                     rasterized=False)
            ax3.plot(tvec[inds][::10],
                     helpers.decimate(value['E'][inds] + value['I'][inds], 10),
                     'k', lw=1, rasterized=False)
        phlp.remove_axis_junk(ax3)

        
        ax3.axis(ax3.axis('tight'))
        ax3.set_yticks([ax3.axis()[2], 0, ax3.axis()[3]])
        ax3.set_yticklabels([np.round((value['I'][inds]).min(), decimals=1),
                             0,
                             np.round((value['E'][inds]).max(), decimals=1)])

        
        ax3.text(0, 1, Y,
            horizontalalignment='left',
            verticalalignment='bottom',
            transform=ax3.transAxes)        
    
        if i == nrows-1:
            ax3.set_xlabel('$t$ (ms)', labelpad=0.1)
        else:
            ax3.set_xticklabels([])
        
        if i == 3:
            ax3.set_ylabel(r'(nA)', labelpad=0.1)
    
        if i == 0:
            ax3.set_title('input currents')
            ax3.legend(loc=1,prop={'size':4})
        phlp.remove_axis_junk(ax3)
        ax3.set_xlim(T)
        


    ############################################################################
    # D part, plot membrane voltage population resolved 
    ############################################################################
        
    nrows = len(meanVoltages.keys())    
    high = top
    low = bottom
    thickn = (high-low) / nrows - sep
    bottoms = np.linspace(low, high-thickn, nrows)[::-1]
    
    colors = phlp.get_colors(len(params.Y)) 

    ax_ = fig.add_axes([lefts[3], bottom, axwidth, top-bottom])
    ax_.axis('off')
    if show_ax_labels:
        phlp.annotate_subplot(ax_, ncols=4, nrows=1, letter='D')        
    
    for i, Y in enumerate(params.Y):
        value = meanVoltages[Y]
        
        tvec = value['tvec']
        inds = (tvec <= T[1]) & (tvec >= T[0])
        
        ax4 = fig.add_axes([lefts[3], bottoms[i], axwidth, thickn])
        ax4.plot(tvec[inds][::10], helpers.decimate(value['data'][inds], 10), color=colors[i],
                 zorder=0, rasterized=False)
                
        
        phlp.remove_axis_junk(ax4)
        
        plt.locator_params(nbins=4)
        
        ax4.axis(ax4.axis('tight'))
        ax4.yaxis.set_major_locator(plt.MaxNLocator(3))
        
        ax4.text(0, 1, Y,
            horizontalalignment='left',
            verticalalignment='bottom',
            transform=ax4.transAxes)        
    
        if i == nrows-1:
            ax4.set_xlabel('$t$ (ms)', labelpad=0.1)
        else:
            ax4.set_xticklabels([])
        
        if i == 3:
            ax4.set_ylabel(r'(mV)', labelpad=0.1)
    
        if i == 0:
            ax4.set_title('voltages')
Пример #3
0
import analysis_params
from hybridLFPy import CachedNetwork

if __name__ == '__main__':

    params = multicompartment_params()
    ana_params = analysis_params.params()
    ana_params.set_PLOS_2column_fig_style(ratio=0.5)

    params.figures_path = os.path.join(params.savefolder, 'figures')
    params.spike_output_path = os.path.join(params.savefolder,
                                            'processed_nest_output')
    params.networkSimParams['spike_output_path'] = params.spike_output_path

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    transient = 200
    T = [890, 920]

    show_ax_labels = True
    show_images = True
    # show_images = False if analysis_params.bw else True

    gs = gridspec.GridSpec(9, 4)

    fig = plt.figure()
    fig.subplots_adjust(left=0.06,
                        right=0.94,
Пример #4
0
if properrun:
    #initiate nest simulation with only the point neuron network parameter class
    networkParams = point_neuron_network_params()
    sli_run(parameters=networkParams,
            fname='microcircuit.sli',
            verbosity='M_WARNING')

    #preprocess the gdf files containing spiking output, voltages, weighted and
    #spatial input spikes and currents:
    merge_gdf(networkParams,
              raw_label=networkParams.spike_detector_label,
              file_type='gdf',
              fileprefix=params.networkSimParams['label'])

#Create an object representation of the simulation output that uses sqlite3
networkSim = CachedNetwork(**params.networkSimParams)

toc = time() - tic
print('NEST simulation and gdf file processing done in  %.3f seconds' % toc)

####### Set up populations #####################################################

if properrun:
    #iterate over each cell type, run single-cell simulations and create
    #population object
    for i, y in enumerate(params.y):
        #create population:
        pop = Population(
            #parent class parameters
            cellParams=params.yCellParams[y],
            rand_rot_axis=params.rand_rot_axis[y],
Пример #5
0
def plot_multi_scale_output_a(fig):
    #get the mean somatic currents and voltages,
    #write pickles if they do not exist:
    if not os.path.isfile(
            os.path.join(params.savefolder, 'data_analysis',
                         'meanInpCurrents.pickle')):
        meanInpCurrents = getMeanInpCurrents(
            params, params.n_rec_input_spikes,
            os.path.join(params.spike_output_path, 'population_input_spikes'))
        f = open(
            os.path.join(params.savefolder, 'data_analysis',
                         'meanInpCurrents.pickle'), 'wb')
        pickle.dump(meanInpCurrents, f)
        f.close()
    else:
        f = open(
            os.path.join(params.savefolder, 'data_analysis',
                         'meanInpCurrents.pickle'), 'rb')
        meanInpCurrents = pickle.load(f)
        f.close()

    if not os.path.isfile(
            os.path.join(params.savefolder, 'data_analysis',
                         'meanVoltages.pickle')):
        meanVoltages = getMeanVoltages(
            params, params.n_rec_voltage,
            os.path.join(params.spike_output_path, 'voltages'))
        f = open(
            os.path.join(params.savefolder, 'data_analysis',
                         'meanVoltages.pickle'), 'wb')
        pickle.dump(meanVoltages, f)
        f.close()
    else:
        f = open(
            os.path.join(params.savefolder, 'data_analysis',
                         'meanVoltages.pickle'), 'rb')
        meanVoltages = pickle.load(f)
        f.close()

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    show_ax_labels = True
    show_insets = False

    transient = 200
    T = [800, 1000]
    T_inset = [900, 920]

    sep = 0.025 / 2  #0.017

    left = 0.075
    bottom = 0.55
    top = 0.975
    right = 0.95
    axwidth = 0.16
    numcols = 4
    insetwidth = axwidth / 2
    insetheight = 0.5

    lefts = np.linspace(left, right - axwidth, numcols)

    #fig = plt.figure()
    ############################################################################
    # A part, plot spike rasters
    ############################################################################
    ax1 = fig.add_axes([lefts[0], bottom, axwidth, top - bottom])
    #fig.text(0.005,0.95,'a',fontsize=8, fontweight='demibold')
    if show_ax_labels:
        phlp.annotate_subplot(
            ax1,
            ncols=4,
            nrows=1.02,
            letter='A',
        )
    ax1.set_title('network activity')
    plt.locator_params(nbins=4)

    x, y = networkSim.get_xy(T, fraction=1)
    networkSim.plot_raster(ax1,
                           T,
                           x,
                           y,
                           markersize=0.2,
                           marker='_',
                           alpha=1.,
                           legend=False,
                           pop_names=True,
                           rasterized=False)
    phlp.remove_axis_junk(ax1)
    ax1.set_xlabel(r'$t$ (ms)', labelpad=0.1)
    ax1.set_ylabel('population', labelpad=0.1)

    # Inset
    if show_insets:
        ax2 = fig.add_axes([
            lefts[0] + axwidth - insetwidth, top - insetheight, insetwidth,
            insetheight
        ])
        plt.locator_params(nbins=4)
        x, y = networkSim.get_xy(T_inset, fraction=0.4)
        networkSim.plot_raster(ax2,
                               T_inset,
                               x,
                               y,
                               markersize=0.25,
                               alpha=1.,
                               legend=False)
        phlp.remove_axis_junk(ax2)
        ax2.set_xticks(T_inset)
        ax2.set_yticks([])
        ax2.set_yticklabels([])
        ax2.set_ylabel('')
        ax2.set_xlabel('')

    ############################################################################
    # B part, plot firing rates
    ############################################################################

    nrows = len(networkSim.X) - 1
    high = top
    low = bottom
    thickn = (high - low) / nrows - sep
    bottoms = np.linspace(low, high - thickn, nrows)[::-1]

    x, y = networkSim.get_xy(T, fraction=1)

    #dummy ax to put label in correct location
    ax_ = fig.add_axes([lefts[1], bottom, axwidth, top - bottom])
    ax_.axis('off')
    if show_ax_labels:
        phlp.annotate_subplot(ax_, ncols=4, nrows=1, letter='B')

    for i, X in enumerate(networkSim.X[:-1]):
        ax3 = fig.add_axes([lefts[1], bottoms[i], axwidth, thickn])
        plt.locator_params(nbins=4)
        phlp.remove_axis_junk(ax3)
        networkSim.plot_f_rate(ax3,
                               X,
                               i,
                               T,
                               x,
                               y,
                               yscale='linear',
                               plottype='fill_between',
                               show_label=False,
                               rasterized=False)
        ax3.yaxis.set_major_locator(plt.MaxNLocator(3))
        if i != nrows - 1:
            ax3.set_xticklabels([])

        if i == 3:
            ax3.set_ylabel(r'(s$^{-1}$)', labelpad=0.1)

        if i == 0:
            ax3.set_title(r'firing rates ')

        ax3.text(0,
                 1,
                 X,
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax3.transAxes)

    for loc, spine in ax3.spines.items():
        if loc in ['right', 'top']:
            spine.set_color('none')
    ax3.xaxis.set_ticks_position('bottom')
    ax3.yaxis.set_ticks_position('left')
    ax3.set_xlabel(r'$t$ (ms)', labelpad=0.1)

    ############################################################################
    # C part, plot somatic synapse input currents population resolved
    ############################################################################

    #set up subplots
    nrows = len(list(meanInpCurrents.keys()))
    high = top
    low = bottom
    thickn = (high - low) / nrows - sep
    bottoms = np.linspace(low, high - thickn, nrows)[::-1]

    ax_ = fig.add_axes([lefts[2], bottom, axwidth, top - bottom])
    ax_.axis('off')
    if show_ax_labels:
        phlp.annotate_subplot(ax_, ncols=4, nrows=1, letter='C')

    for i, Y in enumerate(params.Y):
        value = meanInpCurrents[Y]

        tvec = value['tvec']
        inds = (tvec <= T[1]) & (tvec >= T[0])
        ax3 = fig.add_axes([lefts[2], bottoms[i], axwidth, thickn])
        plt.locator_params(nbins=4)

        if i == 0:
            ax3.plot(
                tvec[inds][::10],
                helpers.decimate(value['E'][inds], 10),
                'k' if analysis_params.bw else
                analysis_params.colorE,  #lw=0.75, #'r',
                rasterized=False,
                label='exc.')
            ax3.plot(
                tvec[inds][::10],
                helpers.decimate(value['I'][inds], 10),
                'gray' if analysis_params.bw else
                analysis_params.colorI,  #lw=0.75, #'b',
                rasterized=False,
                label='inh.')
            ax3.plot(tvec[inds][::10],
                     helpers.decimate(value['E'][inds] + value['I'][inds], 10),
                     'k',
                     lw=1,
                     rasterized=False,
                     label='sum')
        else:
            ax3.plot(
                tvec[inds][::10],
                helpers.decimate(value['E'][inds], 10),
                'k' if analysis_params.bw else
                analysis_params.colorE,  #lw=0.75, #'r',
                rasterized=False)
            ax3.plot(
                tvec[inds][::10],
                helpers.decimate(value['I'][inds], 10),
                'gray' if analysis_params.bw else
                analysis_params.colorI,  #lw=0.75, #'b',
                rasterized=False)
            ax3.plot(tvec[inds][::10],
                     helpers.decimate(value['E'][inds] + value['I'][inds], 10),
                     'k',
                     lw=1,
                     rasterized=False)
        phlp.remove_axis_junk(ax3)

        ax3.axis(ax3.axis('tight'))
        ax3.set_yticks([ax3.axis()[2], 0, ax3.axis()[3]])
        ax3.set_yticklabels([
            np.round((value['I'][inds]).min(), decimals=1), 0,
            np.round((value['E'][inds]).max(), decimals=1)
        ])

        ax3.text(0,
                 1,
                 Y,
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax3.transAxes)

        if i == nrows - 1:
            ax3.set_xlabel('$t$ (ms)', labelpad=0.1)
        else:
            ax3.set_xticklabels([])

        if i == 3:
            ax3.set_ylabel(r'(nA)', labelpad=0.1)

        if i == 0:
            ax3.set_title('input currents')
            ax3.legend(loc=1, prop={'size': 4})
        phlp.remove_axis_junk(ax3)
        ax3.set_xlim(T)

    ############################################################################
    # D part, plot membrane voltage population resolved
    ############################################################################

    nrows = len(list(meanVoltages.keys()))
    high = top
    low = bottom
    thickn = (high - low) / nrows - sep
    bottoms = np.linspace(low, high - thickn, nrows)[::-1]

    colors = phlp.get_colors(len(params.Y))

    ax_ = fig.add_axes([lefts[3], bottom, axwidth, top - bottom])
    ax_.axis('off')
    if show_ax_labels:
        phlp.annotate_subplot(ax_, ncols=4, nrows=1, letter='D')

    for i, Y in enumerate(params.Y):
        value = meanVoltages[Y]

        tvec = value['tvec']
        inds = (tvec <= T[1]) & (tvec >= T[0])

        ax4 = fig.add_axes([lefts[3], bottoms[i], axwidth, thickn])
        ax4.plot(tvec[inds][::10],
                 helpers.decimate(value['data'][inds], 10),
                 color=colors[i],
                 zorder=0,
                 rasterized=False)

        phlp.remove_axis_junk(ax4)

        plt.locator_params(nbins=4)

        ax4.axis(ax4.axis('tight'))
        ax4.yaxis.set_major_locator(plt.MaxNLocator(3))

        ax4.text(0,
                 1,
                 Y,
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax4.transAxes)

        if i == nrows - 1:
            ax4.set_xlabel('$t$ (ms)', labelpad=0.1)
        else:
            ax4.set_xticklabels([])

        if i == 3:
            ax4.set_ylabel(r'(mV)', labelpad=0.1)

        if i == 0:
            ax4.set_title('voltages')

        ax4.set_xlim(T)
Пример #6
0
from hybridLFPy import CachedNetwork
    

if __name__ == '__main__':

    params = multicompartment_params()
    ana_params = analysis_params.params()
    ana_params.set_PLOS_2column_fig_style(ratio=0.5)

    params.figures_path = os.path.join(params.savefolder, 'figures')
    params.spike_output_path = os.path.join(params.savefolder,
                                                       'processed_nest_output')
    params.networkSimParams['spike_output_path'] = params.spike_output_path

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))




    transient=200
    T=[890, 920]
    
    show_ax_labels = True
    show_images = True
    # show_images = False if analysis_params.bw else True
    
    gs = gridspec.GridSpec(9,4)
    
Пример #7
0
def fig_network_input_structure(fig,
                                params,
                                bottom=0.1,
                                top=0.9,
                                transient=200,
                                T=[800, 1000],
                                Df=0.,
                                mlab=True,
                                NFFT=256,
                                srate=1000,
                                window=plt.mlab.window_hanning,
                                noverlap=256 * 3 / 4,
                                letters='abcde',
                                flim=(4, 400),
                                show_titles=True,
                                show_xlabels=True,
                                show_CSD=False):
    '''
    This figure is the top part for plotting a comparison between the PD-model
    and the modified-PD model
    
    '''
    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    # ana_params.set_PLOS_2column_fig_style(ratio=ratio)
    # fig = plt.figure()
    # fig.subplots_adjust(left=0.06, right=0.94, bottom=0.09, top=0.92, wspace=0.5, hspace=0.2)

    #use gridspec to get nicely aligned subplots througout panel
    gs1 = gridspec.GridSpec(5, 5, bottom=bottom, top=top)

    ############################################################################
    # A part, full dot display
    ############################################################################

    ax0 = fig.add_subplot(gs1[:, 0])
    phlp.remove_axis_junk(ax0)
    phlp.annotate_subplot(ax0,
                          ncols=5,
                          nrows=1,
                          letter=letters[0],
                          linear_offset=0.065)

    x, y = networkSim.get_xy(T, fraction=1)
    networkSim.plot_raster(ax0,
                           T,
                           x,
                           y,
                           markersize=0.2,
                           marker='_',
                           alpha=1.,
                           legend=False,
                           pop_names=True,
                           rasterized=False)
    ax0.set_ylabel('population', labelpad=0.)
    ax0.set_xticks([800, 900, 1000])

    if show_titles:
        ax0.set_title('spiking activity', va='center')
    if show_xlabels:
        ax0.set_xlabel(r'$t$ (ms)', labelpad=0.)
    else:
        ax0.set_xlabel('')

    ############################################################################
    # B part, firing rate spectra
    ############################################################################

    # Get the firing rate from Potjan Diesmann et al network activity
    #collect the spikes x is the times, y is the id of the cell.
    T_all = [transient, networkSim.simtime]
    bins = np.arange(transient, networkSim.simtime + 1)

    x, y = networkSim.get_xy(T_all, fraction=1)

    # create invisible axes to position labels correctly
    ax_ = fig.add_subplot(gs1[:, 1])
    phlp.annotate_subplot(ax_,
                          ncols=5,
                          nrows=1,
                          letter=letters[1],
                          linear_offset=0.065)
    if show_titles:
        ax_.set_title('firing rate PSD', va='center')

    ax_.axis('off')

    colors = phlp.get_colors(len(params.Y)) + ['k']

    COUNTER = 0
    label_set = False

    t**s = ['L23E/I', 'L4E/I', 'L5E/I', 'L6E/I', 'TC']

    if x['TC'].size > 0:
        TC = True
    else:
        TC = False

    BAxes = []
    for i, X in enumerate(networkSim.X):

        if i % 2 == 0:
            ax1 = fig.add_subplot(gs1[COUNTER, 1])
            phlp.remove_axis_junk(ax1)

            if x[X].size > 0:
                ax1.text(0.05,
                         0.85,
                         t**s[COUNTER],
                         horizontalalignment='left',
                         verticalalignment='bottom',
                         transform=ax1.transAxes)
            BAxes.append(ax1)

        #firing rate histogram
        hist = np.histogram(x[X], bins=bins)[0].astype(float)
        hist -= hist.mean()

        if mlab:
            Pxx, freqs = plt.mlab.psd(hist,
                                      NFFT=NFFT,
                                      Fs=srate,
                                      noverlap=noverlap,
                                      window=window)
        else:
            [freqs, Pxx] = hlp.powerspec([hist],
                                         tbin=1.,
                                         Df=Df,
                                         pointProcess=False)
            mask = np.where(freqs >= 0.)
            freqs = freqs[mask]
            Pxx = Pxx.flatten()
            Pxx = Pxx[mask]
            Pxx = Pxx / (T_all[1] - T_all[0])**2

        if x[X].size > 0:
            ax1.loglog(freqs[1:],
                       Pxx[1:],
                       label=X,
                       color=colors[i],
                       clip_on=True)
            ax1.axis(ax1.axis('tight'))
            ax1.set_ylim([5E-4, 5E2])
            ax1.set_yticks([1E-3, 1E-1, 1E1])
            if label_set == False:
                ax1.set_ylabel(r'(s$^{-2}$/Hz)', labelpad=0.)
                label_set = True
            if i > 1:
                ax1.set_yticklabels([])
            if i >= 6 and not TC and show_xlabels or X == 'TC' and TC and show_xlabels:
                ax1.set_xlabel('$f$ (Hz)', labelpad=0.)
            if TC and i < 8 or not TC and i < 6:
                ax1.set_xticklabels([])

        else:
            ax1.axis('off')

        ax1.set_xlim(flim)

        if i % 2 == 0:
            COUNTER += 1

        ax1.yaxis.set_minor_locator(plt.NullLocator())

    ############################################################################
    # c part, LFP traces and CSD color plots
    ############################################################################

    ax2 = fig.add_subplot(gs1[:, 2])

    phlp.annotate_subplot(ax2,
                          ncols=5,
                          nrows=1,
                          letter=letters[2],
                          linear_offset=0.065)

    phlp.remove_axis_junk(ax2)
    plot_signal_sum(ax2,
                    params,
                    fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                    unit='mV',
                    T=T,
                    ylim=[-1600, 40],
                    rasterized=False)

    # CSD background colorplot
    if show_CSD:
        im = plot_signal_sum_colorplot(ax2,
                                       params,
                                       os.path.join(params.savefolder,
                                                    'CSDsum.h5'),
                                       unit=r'($\mu$Amm$^{-3}$)',
                                       T=[800, 1000],
                                       colorbar=False,
                                       ylim=[-1600, 40],
                                       fancy=False,
                                       cmap=plt.cm.get_cmap('bwr_r', 21),
                                       rasterized=False)
        cb = phlp.colorbar(fig,
                           ax2,
                           im,
                           width=0.05,
                           height=0.4,
                           hoffset=-0.05,
                           voffset=0.3)
        cb.set_label('($\mu$Amm$^{-3}$)', labelpad=0.1)

    ax2.set_xticks([800, 900, 1000])
    ax2.axis(ax2.axis('tight'))

    if show_titles:
        if show_CSD:
            ax2.set_title('LFP & CSD', va='center')
        else:
            ax2.set_title('LFP', va='center')
    if show_xlabels:
        ax2.set_xlabel(r'$t$ (ms)', labelpad=0.)
    else:
        ax2.set_xlabel('')

    ############################################################################
    # d part, LFP power trace for each layer
    ############################################################################

    freqs, PSD = calc_signal_power(params,
                                   fname=os.path.join(params.savefolder,
                                                      'LFPsum.h5'),
                                   transient=transient,
                                   Df=Df,
                                   mlab=mlab,
                                   NFFT=NFFT,
                                   noverlap=noverlap,
                                   window=window)

    channels = [0, 3, 7, 11, 13]

    # create invisible axes to position labels correctly
    ax_ = fig.add_subplot(gs1[:, 3])
    phlp.annotate_subplot(ax_,
                          ncols=5,
                          nrows=1,
                          letter=letters[3],
                          linear_offset=0.065)

    if show_titles:
        ax_.set_title('LFP PSD', va='center')

    ax_.axis('off')

    for i, ch in enumerate(channels):

        ax = fig.add_subplot(gs1[i, 3])
        phlp.remove_axis_junk(ax)

        if i == 0:
            ax.set_ylabel('(mV$^2$/Hz)', labelpad=0)

        ax.loglog(freqs[1:], PSD[ch][1:], color='k')
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
        if i < 4:
            ax.set_xticklabels([])
        ax.text(0.75,
                0.85,
                'ch. %i' % (channels[i] + 1),
                horizontalalignment='left',
                verticalalignment='bottom',
                fontsize=6,
                transform=ax.transAxes)
        ax.tick_params(axis='y', which='minor', bottom='off')
        ax.axis(ax.axis('tight'))
        ax.yaxis.set_minor_locator(plt.NullLocator())

        ax.set_xlim(flim)
        ax.set_ylim(1E-7, 2E-4)
        if i != 0:
            ax.set_yticklabels([])

    if show_xlabels:
        ax.set_xlabel('$f$ (Hz)', labelpad=0.)

    ############################################################################
    # e part signal power
    ############################################################################

    ax4 = fig.add_subplot(gs1[:, 4])

    phlp.annotate_subplot(ax4,
                          ncols=5,
                          nrows=1,
                          letter=letters[4],
                          linear_offset=0.065)

    fname = os.path.join(params.savefolder, 'LFPsum.h5')
    im = plot_signal_power_colorplot(ax4,
                                     params,
                                     fname=fname,
                                     transient=transient,
                                     Df=Df,
                                     mlab=mlab,
                                     NFFT=NFFT,
                                     window=window,
                                     cmap=plt.cm.get_cmap('gray_r', 12),
                                     vmin=1E-7,
                                     vmax=1E-4)
    phlp.remove_axis_junk(ax4)

    ax4.set_xlim(flim)

    cb = phlp.colorbar(fig,
                       ax4,
                       im,
                       width=0.05,
                       height=0.5,
                       hoffset=-0.05,
                       voffset=0.5)
    cb.set_label('(mV$^2$/Hz)', labelpad=0.1)

    if show_titles:
        ax4.set_title('LFP PSD', va='center')
    if show_xlabels:
        ax4.set_xlabel(r'$f$ (Hz)', labelpad=0.)
    else:
        ax4.set_xlabel('')

    return fig
Пример #8
0
def fig_kernel_lfp(savefolders, params, transient=200, T=[800., 1000.], X='L5E',
                   lags=[20, 20], channels=[0,3,7,11,13]):

    '''
    This function calculates the  STA of LFP, extracts kernels and recontructs the LFP from kernels.
    
    Arguments
    ::
      transient : the time in milliseconds, after which the analysis should begin
                so as to avoid any starting transients
      X : id of presynaptic trigger population
       
    '''

    # Electrode geometry
    zvec = np.r_[params.electrodeParams['z']]

    alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'



    ana_params.set_PLOS_2column_fig_style(ratio=1)
    # Start the figure
    fig = plt.figure()
    fig.subplots_adjust(left=0.06, right=0.95, bottom=0.05, top=0.95, hspace=0.23, wspace=0.55) 

    # create grid_spec
    gs = gridspec.GridSpec(2*len(channels)+1, 7)


    ###########################################################################
    # spikegen "network" activity
    ############################################################################
    
    
    # path to simulation files
    params.savefolder = os.path.join(os.path.split(params.savefolder)[0],
                                     'simulation_output_spikegen')
    params.figures_path = os.path.join(params.savefolder, 'figures')
    params.spike_output_path = os.path.join(params.savefolder,
                                                       'processed_nest_output')
    params.networkSimParams['spike_output_path'] = params.spike_output_path
    
    
    # Get the spikegen LFP:
    f = h5py.File(os.path.join(params.savefolder, 'LFPsum.h5'))
    srate = f['srate'].value
    tvec = np.arange(f['data'].shape[1]) * 1000. / srate
    
    # slice
    inds = (tvec < params.tstop) & (tvec >= transient)
    
    data_sg_raw = f['data'].value.astype(float)
    data_sg = data_sg_raw[:, inds]
    f.close()
    
    # kernel width
    kwidth = 20
    
    # create some dummy spike times
    activationtimes = np.array([x*100 for x in range(3,11)] + [200])
    networkSimSpikegen = CachedNetwork(**params.networkSimParams)

    x, y = networkSimSpikegen.get_xy([transient, params.tstop])

    
    ###########################################################################
    # Part A: spatiotemporal kernels, all presynaptic populations
    ############################################################################
    
    titles = ['TC',
              'L23E/I',
              'LFP kernels \n L4E/I',
              'L5E/I',
              'L6E/I',
              ]
    
    COUNTER = 0 
    for i, X__ in enumerate(([['TC']]) + zip(params.X[1::2], params.X[2::2])):        
        ax = fig.add_subplot(gs[:len(channels), i])
        if i == 0:
            phlp.annotate_subplot(ax, ncols=7, nrows=4, letter=alphabet[0], linear_offset=0.02)
    
        for j, X_ in enumerate(X__):
            # create spikegen histogram for population Y
            cinds = np.arange(activationtimes[np.arange(-1, 8)][COUNTER]-kwidth,
                              activationtimes[np.arange(-1, 8)][COUNTER]+kwidth+2)
            x0_sg = np.histogram(x[X_], bins=cinds)[0].astype(float)
            
            if X_ == ('TC'):
                color='k' if analysis_params.bw else analysis_params.colorE
                # lw = plt.rcParams['lines.linewidth']
                # zorder=1
            else:
                color=('k' if analysis_params.bw else analysis_params.colorE,
                       'gray' if analysis_params.bw else analysis_params.colorI)[j]
            lw = 0.75 if color in ['gray', 'r', 'b'] else plt.rcParams['lines.linewidth']
            zorder = 0 if 'I' in X_ else 1
            
            
            # plot kernel as correlation of spikegen LFP signal with delta spike train
            xcorr, vlimround = plotting_correlation(params,
                                                    x0_sg/x0_sg.sum()**2, 
                                                    data_sg_raw[:, cinds[:-1]]*1E3,
                                                    ax, normalize=False,
                                                    lag=kwidth,
                                                    color=color,
                                                    scalebar=False,
                                                    lw=lw, zorder=zorder)
            if i > 0:
                ax.set_yticklabels([])
            
            ## Create scale bar
            ax.plot([kwidth, kwidth],
                [-1500 + j*3*100, -1400 + j*3*100], lw=2, color=color,
                clip_on=False)
            ax.text(kwidth*1.08, -1450 + j*3*100, '%.1f $\mu$V' % vlimround,
                        rotation='vertical', va='center')
    
            ax.set_xlim((-5, kwidth))
            ax.set_xticks([-20, 0, 20])
            ax.set_xticklabels([-20, 0, 20])
            
            COUNTER += 1
            
        ax.set_title(titles[i])
    

    ################################################
    # Iterate over savefolders
    ################################################

    for i, (savefolder, lag) in enumerate(zip(savefolders, lags)):
        
        # path to simulation files
        params.savefolder = os.path.join(os.path.split(params.savefolder)[0],
                                         savefolder)
        params.figures_path = os.path.join(params.savefolder, 'figures')
        params.spike_output_path = os.path.join(params.savefolder,
                                                'processed_nest_output')
        params.networkSimParams['spike_output_path'] = params.spike_output_path

        #load spike as database inside function to avoid buggy behaviour
        networkSim = CachedNetwork(**params.networkSimParams)

    
    
        # Get the Compound LFP: LFPsum : data[nchannels, timepoints ]
        f = h5py.File(os.path.join(params.savefolder, 'LFPsum.h5'))
        data_raw = f['data'].value
        srate = f['srate'].value
        tvec = np.arange(data_raw.shape[1]) * 1000. / srate
        # slice
        inds = (tvec < params.tstop) & (tvec >= transient)
        data = data_raw[:, inds]
        # subtract mean
        dataT = data.T - data.mean(axis=1)
        data = dataT.T
        f.close()
    
        # Get the spikegen LFP:
        f = h5py.File(os.path.join(os.path.split(params.savefolder)[0], 'simulation_output_spikegen', 'LFPsum.h5'))
        data_sg_raw = f['data'].value
        
        f.close()
    
    
    
    
        ########################################################################
        # Part B: STA LFP
        ########################################################################
        
        titles = ['stLFP(%s)\n(spont.)' % X, 'stLFP(%s)\n(AC. mod.)' % X]
        ax = fig.add_subplot(gs[:len(channels), 5 + i])
        if i == 0:
            phlp.annotate_subplot(ax, ncols=15, nrows=4, letter=alphabet[i+1],
                                  linear_offset=0.02)
          
        #collect the spikes x is the times, y is the id of the cell.
        x, y = networkSim.get_xy([0,params.tstop])
        
        # Get the spikes for the population of interest given as 'Y'
        bins = np.arange(0, params.tstop+2) + 0.5
        x0_raw = np.histogram(x[X], bins=bins)[0]
        x0 = x0_raw[inds].astype(float)
    
        # correlation between firing rate and LFP deviation
        # from mean normalized by the number of spikes  
        xcorr, vlimround = plotting_correlation(params,
                                                x0/x0.sum(), 
                                                data*1E3,
                                                ax, normalize=False, 
                                                #unit='%.3f mV',
                                                lag=lag,
                                                scalebar=False,
                                                color='k',
                                                title=titles[i],
                                                )

        # Create scale bar
        ax.plot([lag, lag],
            [-1500, -1400], lw=2, color='k',
            clip_on=False)
        ax.text(lag*1.08, -1450, '%.1f $\mu$V' % vlimround,
                    rotation='vertical', va='center')


        [Xind] = np.where(np.array(networkSim.X) == X)[0]        
                
        # create spikegen histogram for population Y
        x0_sg = np.zeros(x0.shape, dtype=float)
        x0_sg[activationtimes[Xind]] += params.N_X[Xind]
        

        ax.set_yticklabels([])
        ax.set_xticks([-lag, 0, lag])
        ax.set_xticklabels([-lag, 0, lag])

        
        ###########################################################################
        # Part C, F: LFP and reconstructed LFP
        ############################################################################

        # create grid_spec
        gsb = gridspec.GridSpec(2*len(channels)+1, 8)

      
        ax = fig.add_subplot(gsb[1+len(channels):, (i*4):(i*4+2)])
        phlp.annotate_subplot(ax, ncols=8/2., nrows=4, letter=alphabet[i*3+2],
                              linear_offset=0.02)
          
        # extract kernels, force negative lags to be zero
        kernels = np.zeros((len(params.N_X), 16, kwidth*2))
        for j in range(len(params.X)):
            kernels[j, :, kwidth:] = data_sg_raw[:, (j+2)*100:kwidth+(j+2)*100]/params.N_X[j]
    
        LFP_reconst_raw = np.zeros(data_raw.shape)
    
        for j, pop in enumerate(params.X):
            x0_raw = np.histogram(x[pop], bins=bins)[0].astype(float)
            for ch in range(kernels.shape[1]):
                LFP_reconst_raw[ch] += np.convolve(x0_raw, kernels[j, ch],
                                                   'same')
        
        # slice
        LFP_reconst = LFP_reconst_raw[:, inds]
        # subtract mean
        LFP_reconstT = LFP_reconst.T - LFP_reconst.mean(axis=1)
        LFP_reconst = LFP_reconstT.T
        vlimround = plot_signal_sum(ax, params,
                                    fname=os.path.join(params.savefolder,
                                                           'LFPsum.h5'),
                                    unit='mV', scalebar=True,
                                    T=T, ylim=[-1550, 50],
                                    color='k', label='$real$',
                                    rasterized=False,
                                    zorder=1)
    
        plot_signal_sum(ax, params, fname=LFP_reconst_raw,
                        unit='mV', scaling_factor= 1., scalebar=False,
                        vlimround=vlimround,
                        T=T, ylim=[-1550, 50],
                        color='gray' if analysis_params.bw else analysis_params.colorP,
                        label='$reconstr$',
                        rasterized=False,
                        lw=1, zorder=0)
        ax.set_title('LFP & population \n rate predictor')
        if i > 0:
            ax.set_yticklabels([])


        
        ###########################################################################
        # Part D,G: Correlation coefficient
        ############################################################################
        
        ax = fig.add_subplot(gsb[1+len(channels):, i*4+2:i*4+3])
        phlp.remove_axis_junk(ax)
        phlp.annotate_subplot(ax, ncols=8./1, nrows=4, letter=alphabet[i*3+3],
                              linear_offset=0.02)
            
        cc = np.zeros(len(zvec))
        for ch in np.arange(len(zvec)):
            cc[ch] = np.corrcoef(data[ch], LFP_reconst[ch])[1, 0]
        
        ax.barh(zvec, cc, height=80, align='center', color='0.5', linewidth=0.5)

        # superimpose the chance level, obtained by mixing one input vector n times
        # while keeping the other fixed. We show boxes drawn left to right where
        # these denote mean +/- two standard deviations.
        N = 1000
        method = 'randphase' #or 'permute'
        chance = np.zeros((cc.size, N))
        for ch in np.arange(len(zvec)):
            x1 = LFP_reconst[ch]
            x1 -= x1.mean()
            if method == 'randphase':
                x0 = data[ch]
                x0 -= x0.mean()
                X00 = np.fft.fft(x0)
            for n in range(N):
                if method == 'permute':
                    x0 = np.random.permutation(datas[ch])
                elif method == 'randphase':
                    X0 = np.copy(X00)
                    #random phase information such that spectra is preserved
                    theta = np.random.uniform(0, 2*np.pi, size=X0.size // 2-1)
                    #half-sided real and imaginary component 
                    real = abs(X0[1:X0.size // 2])*np.cos(theta)
                    imag = abs(X0[1:X0.size // 2])*np.sin(theta)
                    
                    #account for the antisymmetric phase values
                    X0.imag[1:imag.size+1] = imag
                    X0.imag[imag.size+2:] = -imag[::-1]
                    X0.real[1:real.size+1] = real
                    X0.real[real.size+2:] = real[::-1]
                    x0 = np.fft.ifft(X0).real

                chance[ch, n] = np.corrcoef(x0, x1)[1, 0]

        # p-values, compute the fraction of chance correlations > cc at each channel
        p = []
        for h, x in enumerate(cc):
            p += [(chance[h, ] >= x).sum() / float(N)]
        
        print('p-values:', p)


        #compute the 99% percentile of the chance data
        right = np.percentile(chance, 99, axis=-1)

        ax.plot(right, zvec, ':', color='k', lw=1.)    
        ax.set_ylim([-1550, 50])
        ax.set_yticklabels([])
        ax.set_yticks(zvec)
        ax.set_xlim([0, 1.])
        ax.set_xticks([0.0, 0.5, 1])
        ax.yaxis.tick_left()
        ax.set_xlabel('$cc$ (-)', labelpad=0.1)
        ax.set_title('corr. \n coef.')
    
        print 'correlation coefficients:'
        print cc


        ###########################################################################
        # Part E,H: Power spectra
        ############################################################################
        

        #compute PSDs ratio between ground truth and estimate
        freqs, PSD_data = calc_signal_power(params, fname=data,
                                            transient=transient, Df=None,
                                            mlab=True,
                                            NFFT=256, noverlap=128,
                                            window=plt.mlab.window_hanning)
        freqs, PSD_LFP_reconst = calc_signal_power(params, fname=LFP_reconst,
                                            transient=transient, Df=None,
                                            mlab=True,
                                            NFFT=256, noverlap=128,
                                            window=plt.mlab.window_hanning)

        zv = np.r_[params.electrodeParams['z']]
        zv = np.r_[zv, zv[-1] + np.diff(zv)[-1]]
        inds = freqs >= 1  # frequencies greater than 1 Hz  

        for j, ch in enumerate(channels):
        
            ax = fig.add_subplot(gsb[1+len(channels)+j, (i*4+3):(i*4+4)])
            if j == 0:
                phlp.annotate_subplot(ax, ncols=8./1, nrows=4.5*len(channels),
                                      letter=alphabet[i*3+4], linear_offset=0.02)
                ax.set_title('PSD')
                

            phlp.remove_axis_junk(ax)
            ax.loglog(freqs[inds], PSD_data[ch, inds], 'k', label='LFP',
                      clip_on=True, zorder=1)
            ax.loglog(freqs[inds], PSD_LFP_reconst[ch, inds],
                      'gray' if analysis_params.bw else analysis_params.colorP,
                      label='predictor', clip_on=True, lw=1, zorder=0)
            ax.set_xlim([4E0,4E2])
            ax.set_ylim([1E-8, 1E-4])
            ax.tick_params(axis='y', which='major', pad=0)
            ax.set_yticks([1E-8,1E-6,1E-4])
            ax.yaxis.set_minor_locator(plt.NullLocator())
            ax.text(0.8, 0.9, 'ch. %i' % (ch+1),
                    horizontalalignment='left',
                    verticalalignment='center',
                    fontsize=6, 
                    transform=ax.transAxes)
            
            if j == 0:
                ax.set_ylabel('(mV$^2$/Hz)', labelpad=0.)
            if j > 0:
                ax.set_yticklabels([])
            if j == len(channels)-1:
                ax.set_xlabel(r'$f$ (Hz)', labelpad=0.)
            else:
                ax.set_xticklabels([])



    return fig, PSD_LFP_reconst, PSD_data
Пример #9
0
def fig_kernel_lfp_EITN_II(savefolders, params, transient=200, T=[800., 1000.], X='L5E',
                   lags=[20, 20], channels=[0,3,7,11,13]):

    '''
    This function calculates the  STA of LFP, extracts kernels and recontructs the LFP from kernels.
    
    Arguments
    ::
      transient : the time in milliseconds, after which the analysis should begin
                so as to avoid any starting transients
      X : id of presynaptic trigger population
       
    '''

    # Electrode geometry
    zvec = np.r_[params.electrodeParams['z']]

    alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'



    ana_params.set_PLOS_2column_fig_style(ratio=0.5)
    # Start the figure
    fig = plt.figure()
    fig.subplots_adjust(left=0.06, right=0.95, bottom=0.08, top=0.9, hspace=0.23, wspace=0.55) 

    # create grid_spec
    gs = gridspec.GridSpec(len(channels), 7)


    ###########################################################################
    # spikegen "network" activity
    ############################################################################
    
    
    # path to simulation files
    savefolder = 'simulation_output_spikegen'
    params.savefolder = os.path.join(os.path.split(params.savefolder)[0],
                                         savefolder)
    params.figures_path = os.path.join(params.savefolder, 'figures')
    params.spike_output_path = os.path.join(params.savefolder,
                                                       'processed_nest_output')
    params.networkSimParams['spike_output_path'] = params.spike_output_path
    
    
    # Get the spikegen LFP:
    f = h5py.File(os.path.join('simulation_output_spikegen', 'LFPsum.h5'))
    srate = f['srate'].value
    tvec = np.arange(f['data'].shape[1]) * 1000. / srate
    
    # slice
    inds = (tvec < params.tstop) & (tvec >= transient)
    
    data_sg_raw = f['data'].value.astype(float)
    data_sg = data_sg_raw[:, inds]
    f.close()
    
    # kernel width
    kwidth = 20
    
    # create some dummy spike times
    activationtimes = np.array([x*100 for x in range(3,11)] + [200])
    networkSimSpikegen = CachedNetwork(**params.networkSimParams)

    x, y = networkSimSpikegen.get_xy([transient, params.tstop])

    
    ############################################################################
    ## Part A: spatiotemporal kernels, all presynaptic populations
    #############################################################################
    #
    #titles = ['TC',
    #          'L23E/I',
    #          'LFP kernels \n L4E/I',
    #          'L5E/I',
    #          'L6E/I',
    #          ]
    #
    #COUNTER = 0 
    #for i, X__ in enumerate(([['TC']]) + zip(params.X[1::2], params.X[2::2])):        
    #    ax = fig.add_subplot(gs[:len(channels), i])
    #    if i == 0:
    #        phlp.annotate_subplot(ax, ncols=7, nrows=4, letter=alphabet[0], linear_offset=0.02)
    #
    #    for j, X_ in enumerate(X__):
    #        # create spikegen histogram for population Y
    #        cinds = np.arange(activationtimes[np.arange(-1, 8)][COUNTER]-kwidth,
    #                          activationtimes[np.arange(-1, 8)][COUNTER]+kwidth+2)
    #        x0_sg = np.histogram(x[X_], bins=cinds)[0].astype(float)
    #        
    #        if X_ == ('TC'):
    #            color='r'
    #        else:
    #            color=('r', 'b')[j]
    #        
    #        
    #        # plot kernel as correlation of spikegen LFP signal with delta spike train
    #        xcorr, vlimround = plotting_correlation(params,
    #                                                x0_sg/x0_sg.sum()**2, 
    #                                                data_sg_raw[:, cinds[:-1]]*1E3,
    #                                                ax, normalize=False,
    #                                                lag=kwidth,
    #                                                color=color,
    #                                                scalebar=False)
    #        if i > 0:
    #            ax.set_yticklabels([])
    #        
    #        ## Create scale bar
    #        ax.plot([kwidth, kwidth],
    #            [-1500 + j*3*100, -1400 + j*3*100], lw=2, color=color,
    #            clip_on=False)
    #        ax.text(kwidth*1.08, -1450 + j*3*100, '%.1f $\mu$V' % vlimround,
    #                    rotation='vertical', va='center')
    #
    #        ax.set_xlim((-5, kwidth))
    #        ax.set_xticks([-20, 0, 20])
    #        ax.set_xticklabels([-20, 0, 20])
    #        
    #        COUNTER += 1
    #        
    #    ax.set_title(titles[i])
    

    ################################################
    # Iterate over savefolders
    ################################################

    for i, (savefolder, lag) in enumerate(zip(savefolders, lags)):
        
        # path to simulation files
        params.savefolder = os.path.join(os.path.split(params.savefolder)[0],
                                         savefolder)
        params.figures_path = os.path.join(params.savefolder, 'figures')
        params.spike_output_path = os.path.join(params.savefolder,
                                                'processed_nest_output')
        params.networkSimParams['spike_output_path'] = params.spike_output_path
        
        #load spike as database inside function to avoid buggy behaviour
        networkSim = CachedNetwork(**params.networkSimParams)
        
        
        
        # Get the Compound LFP: LFPsum : data[nchannels, timepoints ]
        f = h5py.File(os.path.join(params.savefolder, 'LFPsum.h5'))
        data_raw = f['data'].value
        srate = f['srate'].value
        tvec = np.arange(data_raw.shape[1]) * 1000. / srate
        # slice
        inds = (tvec < params.tstop) & (tvec >= transient)
        data = data_raw[:, inds]
        # subtract mean
        dataT = data.T - data.mean(axis=1)
        data = dataT.T
        f.close()
        
        # Get the spikegen LFP:
        f = h5py.File(os.path.join('simulation_output_spikegen', 'LFPsum.h5'))
        data_sg_raw = f['data'].value
        
        f.close()
        #
        #
        #
        #
        #########################################################################
        ## Part B: STA LFP
        #########################################################################
        #
        #titles = ['staLFP(%s)\n(spont.)' % X, 'staLFP(%s)\n(AC. mod.)' % X]
        #ax = fig.add_subplot(gs[:len(channels), 5 + i])
        #if i == 0:
        #    phlp.annotate_subplot(ax, ncols=15, nrows=4, letter=alphabet[i+1],
        #                          linear_offset=0.02)
        #  
        #collect the spikes x is the times, y is the id of the cell.
        x, y = networkSim.get_xy([0,params.tstop])
        #
        ## Get the spikes for the population of interest given as 'Y'
        bins = np.arange(0, params.tstop+2) + 0.5
        x0_raw = np.histogram(x[X], bins=bins)[0]
        x0 = x0_raw[inds].astype(float)
        #
        ## correlation between firing rate and LFP deviation
        ## from mean normalized by the number of spikes  
        #xcorr, vlimround = plotting_correlation(params,
        #                                        x0/x0.sum(), 
        #                                        data*1E3,
        #                                        ax, normalize=False, 
        #                                        #unit='%.3f mV',
        #                                        lag=lag,
        #                                        scalebar=False,
        #                                        color='k',
        #                                        title=titles[i],
        #                                        )
        #
        ## Create scale bar
        #ax.plot([lag, lag],
        #    [-1500, -1400], lw=2, color='k',
        #    clip_on=False)
        #ax.text(lag*1.08, -1450, '%.1f $\mu$V' % vlimround,
        #            rotation='vertical', va='center')
        #
        #
        #[Xind] = np.where(np.array(networkSim.X) == X)[0]        
        #        
        ## create spikegen histogram for population Y
        #x0_sg = np.zeros(x0.shape, dtype=float)
        #x0_sg[activationtimes[Xind]] += params.N_X[Xind]
        #
        #
        #ax.set_yticklabels([])
        #ax.set_xticks([-lag, 0, lag])
        #ax.set_xticklabels([-lag, 0, lag])

        
        ###########################################################################
        # Part C, F: LFP and reconstructed LFP
        ############################################################################

        # create grid_spec
        gsb = gridspec.GridSpec(len(channels), 8)

      
        ax = fig.add_subplot(gsb[:, (i*4):(i*4+2)])
        phlp.annotate_subplot(ax, ncols=8/2., nrows=4, letter=alphabet[i*3+2],
                              linear_offset=0.02)
          
        # extract kernels, force negative lags to be zero
        kernels = np.zeros((len(params.N_X), 16, kwidth*2))
        for j in range(len(params.X)):
            kernels[j, :, kwidth:] = data_sg_raw[:, (j+2)*100:kwidth+(j+2)*100]/params.N_X[j]
    
        LFP_reconst_raw = np.zeros(data_raw.shape)
    
        for j, pop in enumerate(params.X):
            x0_raw = np.histogram(x[pop], bins=bins)[0].astype(float)
            for ch in range(kernels.shape[1]):
                LFP_reconst_raw[ch] += np.convolve(x0_raw, kernels[j, ch],
                                                   'same')
        
        # slice
        LFP_reconst = LFP_reconst_raw[:, inds]
        # subtract mean
        LFP_reconstT = LFP_reconst.T - LFP_reconst.mean(axis=1)
        LFP_reconst = LFP_reconstT.T
        vlimround = plot_signal_sum(ax, params,
                                    fname=os.path.join(params.savefolder,
                                                           'LFPsum.h5'),
                    unit='mV', scalebar=True,
                        T=T, ylim=[-1550, 50],
                        color='k', label='$real$',
                        rasterized=False)
    
        plot_signal_sum(ax, params, fname=LFP_reconst_raw,
                    unit='mV', scaling_factor= 1., scalebar=False,
                        vlimround=vlimround,
                        T=T, ylim=[-1550, 50],
                        color='r', label='$reconstr$',
                        rasterized=False)
        ax.set_title('LFP & population \n rate predictor')
        if i > 0:
            ax.set_yticklabels([])


        
        ###########################################################################
        # Part D,G: Correlation coefficient
        ############################################################################
        
        ax = fig.add_subplot(gsb[:, i*4+2:i*4+3])
        phlp.remove_axis_junk(ax)
        phlp.annotate_subplot(ax, ncols=8./1, nrows=4, letter=alphabet[i*3+3],
                              linear_offset=0.02)
            
        cc = np.zeros(len(zvec))
        for ch in np.arange(len(zvec)):
            cc[ch] = np.corrcoef(data[ch], LFP_reconst[ch])[1, 0]
        
        ax.barh(zvec, cc, height=90, align='center', color='1', linewidth=0.5)
        ax.set_ylim([-1550, 50])
        ax.set_yticklabels([])
        ax.set_yticks(zvec)
        ax.set_xlim([0.0, 1.])
        ax.set_xticks([0.0, 0.5, 1])
        ax.yaxis.tick_left()
        ax.set_xlabel('$cc$ (-)', labelpad=0.1)
        ax.set_title('corr. \n coef.')
    
        print 'correlation coefficients:'
        print cc


        ###########################################################################
        # Part E,H: Power spectra
        ############################################################################
        

        #compute PSDs ratio between ground truth and estimate
        freqs, PSD_data = calc_signal_power(params, fname=data,
                                            transient=transient, Df=None, mlab=True,
                                            NFFT=256, noverlap=128,
                                            window=plt.mlab.window_hanning)
        freqs, PSD_LFP_reconst = calc_signal_power(params, fname=LFP_reconst,
                                            transient=transient, Df=None, mlab=True,
                                            NFFT=256, noverlap=128,
                                            window=plt.mlab.window_hanning)

        zv = np.r_[params.electrodeParams['z']]
        zv = np.r_[zv, zv[-1] + np.diff(zv)[-1]]
        inds = freqs >= 1  # frequencies greater than 1 Hz  

        for j, ch in enumerate(channels):
        
            ax = fig.add_subplot(gsb[j, (i*4+3):(i*4+4)])
            if j == 0:
                phlp.annotate_subplot(ax, ncols=8./1, nrows=4.5*len(channels),
                                      letter=alphabet[i*3+4], linear_offset=0.02)
                ax.set_title('PSD')
                

            phlp.remove_axis_junk(ax)
            ax.loglog(freqs[inds], PSD_data[ch, inds], 'k', label='LFP', clip_on=True)
            ax.loglog(freqs[inds], PSD_LFP_reconst[ch, inds], 'r', label='predictor', clip_on=True)
            ax.set_xlim([4E0,4E2])
            ax.set_ylim([1E-8, 1E-4])
            ax.tick_params(axis='y', which='major', pad=0)
            ax.set_yticks([1E-8,1E-6,1E-4])
            ax.yaxis.set_minor_locator(plt.NullLocator())
            ax.text(0.8, 0.9, 'ch. %i' % (ch+1),
                    horizontalalignment='left',
                    verticalalignment='center',
                    fontsize=6, 
                    transform=ax.transAxes)
            
            if j == 0:
                ax.set_ylabel('(mV$^2$/Hz)', labelpad=0.)
            if j > 0:
                ax.set_yticklabels([])
            if j == len(channels)-1:
                ax.set_xlabel(r'$f$ (Hz)', labelpad=0.)
            else:
                ax.set_xticklabels([])



    return fig, PSD_LFP_reconst, PSD_data
Пример #10
0
    #initiate nest simulation with only the point neuron network parameter class
    networkParams = point_neuron_network_params()
    sli_run(parameters=networkParams,
            fname='microcircuit.sli',
            verbosity='M_WARNING')
    
    #preprocess the gdf files containing spiking output, voltages, weighted and
    #spatial input spikes and currents:
    merge_gdf(networkParams,
              raw_label=networkParams.spike_detector_label,
              file_type='gdf',
              fileprefix=params.networkSimParams['label'])


#Create an object representation of the simulation output that uses sqlite3
networkSim = CachedNetwork(**params.networkSimParams)


toc = time() - tic
print 'NEST simulation and gdf file processing done in  %.3f seconds' % toc


####### Set up populations #####################################################

if properrun:
    #iterate over each cell type, run single-cell simulations and create
    #population object
    for i, y in enumerate(params.y):
        #create population:
        pop = Population(
                #parent class parameters
Пример #11
0
def fig_kernel_lfp_EITN_I(savefolders, params, transient=200, T=[800., 1000.], X='L5E',
                   lags=[20, 20], channels=[0,3,7,11,13]):

    '''
    This function calculates the  STA of LFP, extracts kernels and recontructs the LFP from kernels.
    
    Arguments
    ::
      transient : the time in milliseconds, after which the analysis should begin
                so as to avoid any starting transients
      X : id of presynaptic trigger population
       
    '''

    # Electrode geometry
    zvec = np.r_[params.electrodeParams['z']]

    alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'



    ana_params.set_PLOS_2column_fig_style(ratio=0.5)
    # Start the figure
    fig = plt.figure()
    fig.subplots_adjust(left=0.06, right=0.95, bottom=0.08, top=0.90, hspace=0.23, wspace=0.55) 

    # create grid_spec
    gs = gridspec.GridSpec(1, 7)


    ###########################################################################
    # spikegen "network" activity
    ############################################################################
    
    
    # path to simulation files
    params.savefolder = os.path.join(os.path.split(params.savefolder)[0],
                                         'simulation_output_spikegen')
    params.figures_path = os.path.join(params.savefolder, 'figures')
    params.spike_output_path = os.path.join(params.savefolder,
                                                       'processed_nest_output')
    params.networkSimParams['spike_output_path'] = params.spike_output_path
    
    
    # Get the spikegen LFP:
    f = h5py.File(os.path.join('simulation_output_spikegen', 'LFPsum.h5'))
    srate = f['srate'].value
    tvec = np.arange(f['data'].shape[1]) * 1000. / srate
    
    # slice
    inds = (tvec < params.tstop) & (tvec >= transient)
    
    data_sg_raw = f['data'].value.astype(float)
    data_sg = data_sg_raw[:, inds]
    f.close()
    
    # kernel width
    kwidth = 20
    
    # create some dummy spike times
    activationtimes = np.array([x*100 for x in range(3,11)] + [200])
    networkSimSpikegen = CachedNetwork(**params.networkSimParams)

    x, y = networkSimSpikegen.get_xy([transient, params.tstop])

    
    ###########################################################################
    # Part A: spatiotemporal kernels, all presynaptic populations
    ############################################################################
    
    titles = ['TC',
              'L23E/I',
              'LFP kernels \n L4E/I',
              'L5E/I',
              'L6E/I',
              ]
    
    COUNTER = 0 
    for i, X__ in enumerate(([['TC']]) + zip(params.X[1::2], params.X[2::2])):        
        ax = fig.add_subplot(gs[0, i])
        if i == 0:
            phlp.annotate_subplot(ax, ncols=7, nrows=4, letter=alphabet[0], linear_offset=0.02)
    
        for j, X_ in enumerate(X__):
            # create spikegen histogram for population Y
            cinds = np.arange(activationtimes[np.arange(-1, 8)][COUNTER]-kwidth,
                              activationtimes[np.arange(-1, 8)][COUNTER]+kwidth+2)
            x0_sg = np.histogram(x[X_], bins=cinds)[0].astype(float)
            
            if X_ == ('TC'):
                color='r'
            else:
                color=('r', 'b')[j]
            
            
            # plot kernel as correlation of spikegen LFP signal with delta spike train
            xcorr, vlimround = plotting_correlation(params,
                                                    x0_sg/x0_sg.sum()**2, 
                                                    data_sg_raw[:, cinds[:-1]]*1E3,
                                                    ax, normalize=False,
                                                    lag=kwidth,
                                                    color=color,
                                                    scalebar=False)
            if i > 0:
                ax.set_yticklabels([])
            
            ## Create scale bar
            ax.plot([kwidth, kwidth],
                [-1500 + j*3*100, -1400 + j*3*100], lw=2, color=color,
                clip_on=False)
            ax.text(kwidth*1.08, -1450 + j*3*100, '%.1f $\mu$V' % vlimround,
                        rotation='vertical', va='center')
    
            ax.set_xlim((-5, kwidth))
            ax.set_xticks([-20, 0, 20])
            ax.set_xticklabels([-20, 0, 20])
            
            COUNTER += 1
            
        ax.set_title(titles[i])
    

    ################################################
    # Iterate over savefolders
    ################################################

    for i, (savefolder, lag) in enumerate(zip(savefolders, lags)):
        
        # path to simulation files
        params.savefolder = os.path.join(os.path.split(params.savefolder)[0],
                                         savefolder)
        params.figures_path = os.path.join(params.savefolder, 'figures')
        params.spike_output_path = os.path.join(params.savefolder,
                                                'processed_nest_output')
        params.networkSimParams['spike_output_path'] = params.spike_output_path

        #load spike as database inside function to avoid buggy behaviour
        networkSim = CachedNetwork(**params.networkSimParams)

    
    
        # Get the Compound LFP: LFPsum : data[nchannels, timepoints ]
        f = h5py.File(os.path.join(params.savefolder, 'LFPsum.h5'))
        data_raw = f['data'].value
        srate = f['srate'].value
        tvec = np.arange(data_raw.shape[1]) * 1000. / srate
        # slice
        inds = (tvec < params.tstop) & (tvec >= transient)
        data = data_raw[:, inds]
        # subtract mean
        dataT = data.T - data.mean(axis=1)
        data = dataT.T
        f.close()
    
        # Get the spikegen LFP:
        f = h5py.File(os.path.join('simulation_output_spikegen', 'LFPsum.h5'))
        data_sg_raw = f['data'].value
        
        f.close()
    
    
    
    
        ########################################################################
        # Part B: STA LFP
        ########################################################################
        
        titles = ['stLFP(%s)\n(spont.)' % X, 'stLFP(%s)\n(AC. mod.)' % X]
        ax = fig.add_subplot(gs[0, 5 + i])
        if i == 0:
            phlp.annotate_subplot(ax, ncols=15, nrows=4, letter=alphabet[i+1],
                                  linear_offset=0.02)
          
        #collect the spikes x is the times, y is the id of the cell.
        x, y = networkSim.get_xy([0,params.tstop])
        
        # Get the spikes for the population of interest given as 'Y'
        bins = np.arange(0, params.tstop+2) + 0.5
        x0_raw = np.histogram(x[X], bins=bins)[0]
        x0 = x0_raw[inds].astype(float)
    
        # correlation between firing rate and LFP deviation
        # from mean normalized by the number of spikes  
        xcorr, vlimround = plotting_correlation(params,
                                                x0/x0.sum(), 
                                                data*1E3,
                                                ax, normalize=False, 
                                                #unit='%.3f mV',
                                                lag=lag,
                                                scalebar=False,
                                                color='k',
                                                title=titles[i],
                                                )

        # Create scale bar
        ax.plot([lag, lag],
            [-1500, -1400], lw=2, color='k',
            clip_on=False)
        ax.text(lag*1.08, -1450, '%.1f $\mu$V' % vlimround,
                    rotation='vertical', va='center')


        [Xind] = np.where(np.array(networkSim.X) == X)[0]        
                
        # create spikegen histogram for population Y
        x0_sg = np.zeros(x0.shape, dtype=float)
        x0_sg[activationtimes[Xind]] += params.N_X[Xind]
        

        ax.set_yticklabels([])
        ax.set_xticks([-lag, 0, lag])
        ax.set_xticklabels([-lag, 0, lag])

    return fig
# MAIN simulation procedure                                                    #
################################################################################


if __name__ == '__main__':
    #tic toc
    tic = time.time()

    #Create an object representation containing the spiking activity of the network
    #simulation output that uses sqlite3. Again, kwargs are derived from the brunel
    #network instance.
    networkSim = CachedNetwork(
        simtime = PSET['simtime'],
        dt = PSET['dt'],
        spike_output_path = PSET['spike_output_path'],
        label = 'brunel',
        ext = 'gdf',
        GIDs = {'EX' : [1, PSET['NE']], 'IN' : [PSET['NE']+1, PSET['NI']]},
        X = ['EX', 'IN'],
        cmap='rainbow_r',
    )

    ####### Set up populations #####################################################


    #iterate over each cell type, and create populationulation object
    for i, Y in enumerate(PSET['X']):
        #create population:
        pop = Population(
                cellParams = PSET['cellParams'][Y],
                rand_rot_axis = PSET['rand_rot_axis'][Y],
                simulationParams = PSET['simulationParams'],
Пример #13
0
def fig_intro(params,
              ana_params,
              T=[800, 1000],
              fraction=0.05,
              rasterized=False):
    '''set up plot for introduction'''
    ana_params.set_PLOS_2column_fig_style(ratio=0.5)

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    #set up figure and subplots
    fig = plt.figure()
    gs = gridspec.GridSpec(3, 4)

    fig.subplots_adjust(left=0.05, right=0.95, wspace=0.5, hspace=0.)

    #network diagram
    ax0_1 = fig.add_subplot(gs[:, 0], frameon=False)
    ax0_1.set_title('point-neuron network', va='bottom')

    network_sketch(ax0_1, yscaling=1.3)
    ax0_1.xaxis.set_ticks([])
    ax0_1.yaxis.set_ticks([])
    phlp.annotate_subplot(ax0_1,
                          ncols=4,
                          nrows=1,
                          letter='A',
                          linear_offset=0.065)

    #network raster
    ax1 = fig.add_subplot(gs[:, 1], frameon=True)
    phlp.remove_axis_junk(ax1)
    phlp.annotate_subplot(ax1,
                          ncols=4,
                          nrows=1,
                          letter='B',
                          linear_offset=0.065)

    x, y = networkSim.get_xy(T, fraction=fraction)
    # networkSim.plot_raster(ax1, T, x, y, markersize=0.1, alpha=1.,legend=False, pop_names=True)
    networkSim.plot_raster(ax1,
                           T,
                           x,
                           y,
                           markersize=0.2,
                           marker='_',
                           alpha=1.,
                           legend=False,
                           pop_names=True,
                           rasterized=rasterized)
    ax1.set_ylabel('')
    ax1.xaxis.set_major_locator(plt.MaxNLocator(4))
    ax1.set_title('spiking activity', va='bottom')
    a = ax1.axis()
    ax1.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)

    #population
    ax2 = fig.add_subplot(gs[:, 2], frameon=False)
    ax2.xaxis.set_ticks([])
    ax2.yaxis.set_ticks([])
    plot_population(ax2,
                    params,
                    isometricangle=np.pi / 24,
                    plot_somas=False,
                    plot_morphos=True,
                    num_unitsE=1,
                    num_unitsI=1,
                    clip_dendrites=True,
                    main_pops=True,
                    title='',
                    rasterized=rasterized)
    ax2.set_title('multicompartment\nneurons',
                  va='bottom',
                  fontweight='normal')
    phlp.annotate_subplot(ax2,
                          ncols=4,
                          nrows=1,
                          letter='C',
                          linear_offset=0.065)

    #LFP traces in all channels
    ax3 = fig.add_subplot(gs[:, 3], frameon=True)
    phlp.remove_axis_junk(ax3)
    plot_signal_sum(ax3,
                    params,
                    fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                    unit='mV',
                    vlimround=0.8,
                    T=T,
                    ylim=[ax2.axis()[2], ax2.axis()[3]],
                    rasterized=False)
    ax3.set_title('LFP', va='bottom')
    ax3.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax3,
                          ncols=4,
                          nrows=1,
                          letter='D',
                          linear_offset=0.065)
    a = ax3.axis()
    ax3.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)

    #draw some arrows:
    ax = plt.gca()
    ax.annotate(
        "",
        xy=(0.27, 0.5),
        xytext=(.24, 0.5),
        xycoords="figure fraction",
        arrowprops=dict(facecolor='black', arrowstyle='simple'),
    )
    ax.annotate(
        "",
        xy=(0.52, 0.5),
        xytext=(.49, 0.5),
        xycoords="figure fraction",
        arrowprops=dict(facecolor='black', arrowstyle='simple'),
    )
    ax.annotate(
        "",
        xy=(0.78, 0.5),
        xytext=(.75, 0.5),
        xycoords="figure fraction",
        arrowprops=dict(facecolor='black', arrowstyle='simple'),
    )

    return fig
Пример #14
0
def fig_intro(params, fraction=0.05, rasterized=False):
    '''set up plot for introduction'''
    plt.close("all")

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    # num_pops = 8

    fig = plt.figure(figsize=[4.5, 3.5])

    fig.subplots_adjust(left=0.03, right=0.98, wspace=0.5, hspace=0.)
    ax_spikes = fig.add_axes([0.09, 0.4, 0.2, 0.55])
    ax_morph = fig.add_axes([0.37, 0.3, 0.3, 0.75],
                            frameon=False,
                            aspect=1,
                            xticks=[],
                            yticks=[])
    ax_lfp = fig.add_axes([0.73, 0.4, 0.23, 0.55], frameon=True)
    ax_4s = fig.add_axes([0.42, 0.05, 0.25, 0.2],
                         frameon=False,
                         aspect=1,
                         title='head model',
                         xticks=[],
                         yticks=[])
    ax_top_EEG = fig.add_axes([0.65, 0.02, 0.33, 0.32],
                              frameon=False,
                              xticks=[],
                              yticks=[],
                              ylim=[-0.5, .25])
    dt = 1
    t_idx = 875
    T = [t_idx, t_idx + 75]

    fig.text(0.55, 0.97, "multicompartment neurons", fontsize=6, ha="center")
    ax_spikes.set_title("spiking activity", fontsize=6)
    ax_lfp.set_title("LFP", fontsize=6)

    #network raster
    ax_spikes.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.remove_axis_junk(ax_spikes)
    phlp.annotate_subplot(ax_spikes,
                          ncols=4,
                          nrows=1,
                          letter='A',
                          linear_offset=0.045)
    x, y = networkSim.get_xy(T, fraction=fraction)

    networkSim.plot_raster(ax_spikes,
                           T,
                           x,
                           y,
                           markersize=0.2,
                           marker='_',
                           alpha=1.,
                           legend=False,
                           pop_names=True,
                           rasterized=rasterized)

    #population
    plot_population(ax_morph,
                    params,
                    isometricangle=np.pi / 24,
                    plot_somas=False,
                    plot_morphos=True,
                    num_unitsE=1,
                    num_unitsI=1,
                    clip_dendrites=True,
                    main_pops=True,
                    title='',
                    rasterized=rasterized)
    # ax_morph.set_title('multicompartment neurons', va='top')
    phlp.annotate_subplot(ax_morph,
                          ncols=5,
                          nrows=1,
                          letter='B',
                          linear_offset=0.005)

    phlp.remove_axis_junk(ax_lfp)
    #ax_lfp.set_title('LFP', va='bottom')
    ax_lfp.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax_lfp,
                          ncols=4,
                          nrows=2,
                          letter='C',
                          linear_offset=0.025)
    #print(ax_morph.axis())
    plot_signal_sum(ax_lfp,
                    params,
                    fname=join(params.savefolder, 'LFPsum.h5'),
                    unit='mV',
                    vlimround=0.8,
                    T=T,
                    ylim=[-1600, 100],
                    rasterized=False)

    plot_cdms(fig, params, dt, T)

    plot_foursphere_to_ax(ax_4s)
    phlp.annotate_subplot(ax_4s,
                          ncols=3,
                          nrows=7,
                          letter='E',
                          linear_offset=0.05)

    # Plot EEG at top of head
    # ax_top_EEG.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax_top_EEG,
                          ncols=1,
                          nrows=1,
                          letter='F',
                          linear_offset=-0.08)

    # ax_top_EEG.set_ylabel("$\mu$V", labelpad=-3)
    summed_top_EEG = np.load(join(params.savefolder, "summed_EEG.npy"))

    simple_EEG_single_pop = np.load(
        join(params.savefolder, "simple_EEG_single_pop.npy"))
    simple_EEG_pops_with_pos = np.load(
        join(params.savefolder, "simple_EEG_pops_with_pos.npy"))

    tvec = np.arange(len(summed_top_EEG)) * dt

    # sub_pops = ["L5I", "L4I", "L6I", "L23I", "L5E", "L4E", "L6E", "L23E"]
    pops = np.unique(next(zip(*params.mapping_Yy)))
    colors = phlp.get_colors(np.unique(pops).size)
    for p_idx, pop in enumerate(pops):
        pop_eeg = np.load(join(params.savefolder, "EEG_{}.npy".format(pop)))
        pop_eeg -= np.average(pop_eeg)
        # pop_sum.append(pop_eeg)
        ax_top_EEG.plot(pop_eeg, c=colors[p_idx], lw=1)

    ax_top_EEG.plot([878, 878], [-0.1, -0.3], c='k', lw=1)
    ax_top_EEG.plot([878, 888], [-0.3, -0.3], c='k', lw=1)
    ax_top_EEG.text(879, -0.2, "0.2 $\mu$V", va="center")
    ax_top_EEG.text(885, -0.32, "10 ms", va="top", ha="center")

    y0 = summed_top_EEG - np.average(summed_top_EEG)
    y1 = simple_EEG_single_pop - np.average(simple_EEG_single_pop)
    y2 = simple_EEG_pops_with_pos - np.average(simple_EEG_pops_with_pos)

    l3, = ax_top_EEG.plot(tvec, y0 - y2, lw=1.5, c='orange', ls='-')
    l1, = ax_top_EEG.plot(tvec, y0, lw=1.5, c='k')
    l2, = ax_top_EEG.plot(tvec, y2, lw=1.5, c='r', ls='--')

    t0_plot_idx = np.argmin(np.abs(tvec - 875))
    t1_plot_idx = np.argmin(np.abs(tvec - 950))
    max_sig_idx = np.argmax(np.abs(y0[t0_plot_idx:])) + t0_plot_idx

    EEG_error_at_max_1 = np.abs(y0[max_sig_idx] - y1[max_sig_idx]) / np.abs(
        y0[max_sig_idx])
    EEG_error_at_max_2 = np.abs(y0[max_sig_idx] - y2[max_sig_idx]) / np.abs(
        y0[max_sig_idx])

    max_EEG_error_1 = np.max(
        np.abs(y0[t0_plot_idx:t1_plot_idx] - y1[t0_plot_idx:t1_plot_idx]) /
        np.max(np.abs(y0[t0_plot_idx:t1_plot_idx])))
    max_EEG_error_2 = np.max(
        np.abs(y0[t0_plot_idx:t1_plot_idx] - y2[t0_plot_idx:t1_plot_idx]) /
        np.max(np.abs(y0[t0_plot_idx:t1_plot_idx])))

    print(
        "Error with single pop at sig max (t={:1.3f} ms): {:1.4f}. Max relative error: {:1.4f}"
        .format(tvec[max_sig_idx], EEG_error_at_max_1, max_EEG_error_1))
    print(
        "Error with multipop at sig max (t={:1.3f} ms): {:1.4f}. Max relative error: {:1.4f}"
        .format(tvec[max_sig_idx], EEG_error_at_max_2, max_EEG_error_2))
    ax_top_EEG.legend([l1, l2, l3], ["full sum", "pop. dipole", "difference"],
                      frameon=False,
                      loc=(0.5, 0.1))
    # phlp.remove_axis_junk(ax_top_EEG)
    ax_top_EEG.axvline(900, c='gray', ls='--')
    ax_lfp.axvline(900, c='gray', ls='--')

    ax_top_EEG.set_xlim(T)

    fig.savefig(join("..", "figures", 'Figure6.png'), dpi=300)
    fig.savefig(join("..", "figures", 'Figure6.pdf'), dpi=300)
Пример #15
0
                            fileprefix=params.networkSimParams['label'])
nest_output_processing.merge_gdf(networkParams,
                            raw_label=networkParams.voltmeter_label,
                            file_type='dat',
                            fileprefix='voltages')
nest_output_processing.merge_gdf(networkParams,
                            raw_label=networkParams.weighted_input_spikes_label,
                            file_type='dat',
                            fileprefix='population_input_spikes')
##spatial input currents
#nest_output_processing.create_spatial_input_spikes_hdf5(networkParams,
#                                        fileprefix='depth_res_input_spikes-')


#Create an object representation of the simulation output that uses sqlite3
networkSim = CachedNetwork(**params.networkSimParams)


toc = time() - tic
print 'NEST simulation and gdf file processing done in  %.3f seconds' % toc


####### Set up populations #####################################################

#iterate over each cell type, and create populationulation object
for i, y in enumerate(params.y):
    #create population:
    pop = Population(
            #parent class
            cellParams = params.yCellParams[y],
            rand_rot_axis = params.rand_rot_axis[y],
Пример #16
0
def fig_network_input_structure(fig, params, bottom=0.1, top=0.9, transient=200, T=[800, 1000], Df= 0., mlab= True, NFFT=256, srate=1000,
             window=plt.mlab.window_hanning, noverlap=256*3/4, letters='abcde', flim=(4, 400),
             show_titles=True, show_xlabels=True, show_CSD=False):
    '''
    This figure is the top part for plotting a comparison between the PD-model
    and the modified-PD model
    
    '''
    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))


    # ana_params.set_PLOS_2column_fig_style(ratio=ratio)
    # fig = plt.figure()
    # fig.subplots_adjust(left=0.06, right=0.94, bottom=0.09, top=0.92, wspace=0.5, hspace=0.2)
    
    #use gridspec to get nicely aligned subplots througout panel
    gs1 = gridspec.GridSpec(5, 5, bottom=bottom, top=top)
    
    
    ############################################################################ 
    # A part, full dot display
    ############################################################################
    
    ax0 = fig.add_subplot(gs1[:, 0])
    phlp.remove_axis_junk(ax0)
    phlp.annotate_subplot(ax0, ncols=5, nrows=1, letter=letters[0],
                     linear_offset=0.065)
   
    x, y = networkSim.get_xy(T, fraction=1)
    networkSim.plot_raster(ax0, T, x, y,
                           markersize=0.2, marker='_',
                           alpha=1.,
                           legend=False, pop_names=True,
                           rasterized=False)
    ax0.set_ylabel('population', labelpad=0.)
    ax0.set_xticks([800,900,1000])
   
    if show_titles:
        ax0.set_title('spiking activity',va='center')
    if show_xlabels:
        ax0.set_xlabel(r'$t$ (ms)', labelpad=0.)
    else:
        ax0.set_xlabel('')
      
    ############################################################################
    # B part, firing rate spectra
    ############################################################################

  
    # Get the firing rate from Potjan Diesmann et al network activity
    #collect the spikes x is the times, y is the id of the cell.
    T_all=[transient, networkSim.simtime]
    bins = np.arange(transient, networkSim.simtime+1)
        
    x, y = networkSim.get_xy(T_all, fraction=1)

    # create invisible axes to position labels correctly
    ax_ = fig.add_subplot(gs1[:, 1])
    phlp.annotate_subplot(ax_, ncols=5, nrows=1, letter=letters[1],
                                 linear_offset=0.065)
    if show_titles:
        ax_.set_title('firing rate PSD', va='center')
    
    ax_.axis('off')

    colors = phlp.get_colors(len(params.Y))+['k']
    
    COUNTER = 0
    label_set = False
    
    t**s = ['L23E/I', 'L4E/I', 'L5E/I', 'L6E/I', 'TC']

    if x['TC'].size > 0:
        TC = True
    else:
        TC = False

    BAxes = []
    for i, X in enumerate(networkSim.X):

        if i % 2 == 0:
            ax1 = fig.add_subplot(gs1[COUNTER, 1])
            phlp.remove_axis_junk(ax1)

            if x[X].size > 0:
                ax1.text(0.05, 0.85, t**s[COUNTER],
                    horizontalalignment='left',
                    verticalalignment='bottom',
                    transform=ax1.transAxes)
            BAxes.append(ax1)


        #firing rate histogram
        hist = np.histogram(x[X], bins=bins)[0].astype(float)
        hist -= hist.mean()
        
        if mlab:
            Pxx, freqs=plt.mlab.psd(hist, NFFT=NFFT,
                                    Fs=srate, noverlap=noverlap, window=window)
        else:
            [freqs, Pxx] = hlp.powerspec([hist], tbin= 1.,
                                        Df=Df, pointProcess=False)
            mask = np.where(freqs >= 0.)
            freqs = freqs[mask]
            Pxx = Pxx.flatten()
            Pxx = Pxx[mask]
            Pxx = Pxx/(T_all[1]-T_all[0])**2
        
        if x[X].size > 0:
            ax1.loglog(freqs[1:], Pxx[1:],
                       label=X, color=colors[i],
                       clip_on=True)
            ax1.axis(ax1.axis('tight'))
            ax1.set_ylim([5E-4,5E2])
            ax1.set_yticks([1E-3,1E-1,1E1])
            if label_set == False:
                ax1.set_ylabel(r'(s$^{-2}$/Hz)', labelpad=0.)
                label_set = True
            if i > 1:
                ax1.set_yticklabels([])
            if i >= 6 and not TC and show_xlabels or X == 'TC' and TC and show_xlabels:
                ax1.set_xlabel('$f$ (Hz)', labelpad=0.)
            if TC and i < 8 or not TC and i < 6:
                ax1.set_xticklabels([])    

        else:
            ax1.axis('off')
                       
        ax1.set_xlim(flim)
           
        
        if i % 2 == 0:
            COUNTER += 1
        
        ax1.yaxis.set_minor_locator(plt.NullLocator())
        



    ############################################################################
    # c part, LFP traces and CSD color plots
    ############################################################################
   
    ax2 = fig.add_subplot(gs1[:, 2])
    
    phlp.annotate_subplot(ax2, ncols=5, nrows=1, letter=letters[2],
                     linear_offset=0.065)


    phlp.remove_axis_junk(ax2)
    plot_signal_sum(ax2, params,
                    fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                    unit='mV', T=T, ylim=[-1600, 40],
                    rasterized=False)
    
    # CSD background colorplot
    if show_CSD:
        im = plot_signal_sum_colorplot(ax2, params, os.path.join(params.savefolder, 'CSDsum.h5'),
                                  unit=r'($\mu$Amm$^{-3}$)', T=[800, 1000],
                                  colorbar=False,
                                  ylim=[-1600, 40], fancy=False, cmap=plt.cm.get_cmap('bwr_r', 21),
                                  rasterized=False)
        cb = phlp.colorbar(fig, ax2, im,
                           width=0.05, height=0.4,
                           hoffset=-0.05, voffset=0.3)
        cb.set_label('($\mu$Amm$^{-3}$)', labelpad=0.1)

    ax2.set_xticks([800,900,1000])
    ax2.axis(ax2.axis('tight'))
     
    if show_titles:
        if show_CSD:
            ax2.set_title('LFP & CSD', va='center')
        else:
            ax2.set_title('LFP', va='center')
    if show_xlabels:
        ax2.set_xlabel(r'$t$ (ms)', labelpad=0.)
    else:
        ax2.set_xlabel('')
  
 
    ############################################################################
    # d part, LFP power trace for each layer
    ############################################################################

    freqs, PSD = calc_signal_power(params, fname=os.path.join(params.savefolder,
                                                           'LFPsum.h5'),
                                        transient=transient, Df=Df, mlab=mlab,
                                        NFFT=NFFT, noverlap=noverlap,
                                        window=window)

    channels = [0, 3, 7, 11, 13]
  
    # create invisible axes to position labels correctly
    ax_ = fig.add_subplot(gs1[:, 3])
    phlp.annotate_subplot(ax_, ncols=5, nrows=1, letter=letters[3],
                                 linear_offset=0.065)

    if show_titles:
        ax_.set_title('LFP PSD',va='center')
    
    ax_.axis('off')

    for i, ch in enumerate(channels):

        ax = fig.add_subplot(gs1[i, 3])
        phlp.remove_axis_junk(ax)

        if i == 0:
            ax.set_ylabel('(mV$^2$/Hz)', labelpad=0)

        ax.loglog(freqs[1:],PSD[ch][1:], color='k')
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
        if i < 4:
            ax.set_xticklabels([])
        ax.text(0.75, 0.85,'ch. %i' %(channels[i]+1),
                horizontalalignment='left',
                verticalalignment='bottom',
                fontsize=6,
                transform=ax.transAxes)
        ax.tick_params(axis='y', which='minor', bottom='off')
        ax.axis(ax.axis('tight'))
        ax.yaxis.set_minor_locator(plt.NullLocator())

        ax.set_xlim(flim)
        ax.set_ylim(1E-7,2E-4)
        if i != 0 :
            ax.set_yticklabels([])


    if show_xlabels:
        ax.set_xlabel('$f$ (Hz)', labelpad=0.)
    
    ############################################################################
    # e part signal power
    ############################################################################
    
    ax4 = fig.add_subplot(gs1[:, 4])

    phlp.annotate_subplot(ax4, ncols=5, nrows=1, letter=letters[4],
                     linear_offset=0.065)
  
    fname=os.path.join(params.savefolder, 'LFPsum.h5')
    im = plot_signal_power_colorplot(ax4, params, fname=fname, transient=transient, Df=Df,
                                mlab=mlab, NFFT=NFFT, window=window,
                                cmap=plt.cm.get_cmap('gray_r', 12),
                                vmin=1E-7, vmax=1E-4)
    phlp.remove_axis_junk(ax4)

    ax4.set_xlim(flim)

    cb = phlp.colorbar(fig, ax4, im,
                       width=0.05, height=0.5,
                       hoffset=-0.05, voffset=0.5)
    cb.set_label('(mV$^2$/Hz)', labelpad=0.1)


    if show_titles:
        ax4.set_title('LFP PSD', va='center')
    if show_xlabels:
        ax4.set_xlabel(r'$f$ (Hz)', labelpad=0.)
    else:
        ax4.set_xlabel('')
       
    return fig 
Пример #17
0
if properrun:
    #execute network simulation
    BN.simulate()

#wait for the network simulation to finish, resync MPI threads
COMM.Barrier()


#Create an object representation containing the spiking activity of the network
#simulation output that uses sqlite3. Again, kwargs are derived from the brunel
#network instance.
networkSim = CachedNetwork(
    simtime = BN.simtime,
    dt = BN.dt,
    spike_output_path = BN.spike_output_path,
    label = BN.label,
    ext = 'gdf',
    GIDs = {'EX' : [1, BN.NE], 'IN' : [BN.NE+1, BN.NI]},
    cmap='rainbow_r',
)


if RANK == 0:
    toc = time() - tic
    print('NEST simulation and gdf file processing done in  %.3f seconds' % toc)


####### Set up populations #####################################################

if properrun:
    #iterate over each cell type, and create populationulation object
Пример #18
0
def fig_intro(params, ana_params, T=[800, 1000], fraction=0.05, rasterized=False):
    '''set up plot for introduction'''
    ana_params.set_PLOS_2column_fig_style(ratio=0.5)
    
    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    #set up figure and subplots
    fig = plt.figure()
    gs = gridspec.GridSpec(3, 4)
    
    
    fig.subplots_adjust(left=0.05, right=0.95, wspace=0.5, hspace=0.)


    #network diagram
    ax0_1 = fig.add_subplot(gs[:, 0], frameon=False)
    ax0_1.set_title('point-neuron network', va='bottom')

    network_sketch(ax0_1, yscaling=1.3)
    ax0_1.xaxis.set_ticks([])
    ax0_1.yaxis.set_ticks([])
    phlp.annotate_subplot(ax0_1, ncols=4, nrows=1, letter='A', linear_offset=0.065)
   
    
    #network raster
    ax1 = fig.add_subplot(gs[:, 1], frameon=True)
    phlp.remove_axis_junk(ax1)
    phlp.annotate_subplot(ax1, ncols=4, nrows=1, letter='B', linear_offset=0.065)
       
    x, y = networkSim.get_xy(T, fraction=fraction)
    # networkSim.plot_raster(ax1, T, x, y, markersize=0.1, alpha=1.,legend=False, pop_names=True)
    networkSim.plot_raster(ax1, T, x, y, markersize=0.2, marker='_', alpha=1.,legend=False, pop_names=True, rasterized=rasterized)
    ax1.set_ylabel('')
    ax1.xaxis.set_major_locator(plt.MaxNLocator(4))
    ax1.set_title('spiking activity', va='bottom')
    a = ax1.axis()
    ax1.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)


    #population
    ax2 = fig.add_subplot(gs[:, 2], frameon=False)
    ax2.xaxis.set_ticks([])
    ax2.yaxis.set_ticks([])
    plot_population(ax2, params, isometricangle=np.pi/24, plot_somas=False,
                    plot_morphos=True, num_unitsE=1, num_unitsI=1,
                    clip_dendrites=True, main_pops=True, title='',
                    rasterized=rasterized)
    ax2.set_title('multicompartment\nneurons', va='bottom', fontweight='normal')
    phlp.annotate_subplot(ax2, ncols=4, nrows=1, letter='C', linear_offset=0.065)
    

    #LFP traces in all channels
    ax3 = fig.add_subplot(gs[:, 3], frameon=True)
    phlp.remove_axis_junk(ax3)
    plot_signal_sum(ax3, params, fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                unit='mV', vlimround=0.8,
                T=T, ylim=[ax2.axis()[2], ax2.axis()[3]],
                rasterized=False)
    ax3.set_title('LFP', va='bottom')
    ax3.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax3, ncols=4, nrows=1, letter='D', linear_offset=0.065)
    a = ax3.axis()
    ax3.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)
    
    
    #draw some arrows:
    ax = plt.gca()
    ax.annotate("", xy=(0.27, 0.5), xytext=(.24, 0.5),
                xycoords="figure fraction",
            arrowprops=dict(facecolor='black', arrowstyle='simple'),
            )
    ax.annotate("", xy=(0.52, 0.5), xytext=(.49, 0.5),
                xycoords="figure fraction",
            arrowprops=dict(facecolor='black', arrowstyle='simple'),
            )
    ax.annotate("", xy=(0.78, 0.5), xytext=(.75, 0.5),
                xycoords="figure fraction",
            arrowprops=dict(facecolor='black', arrowstyle='simple'),
            )

    
    return fig