Пример #1
0
    c = df.getDataConst(dbCsv.varConst, doNorm=True, rmNan=True)
    y = df.getDataTs('SMAP_AM', doNorm=True, rmNan=False)
    nx = x.shape[-1] + c.shape[-1]
    ny = 1

    model = rnn.CudnnLstmModel(nx=nx, ny=ny, hiddenSize=64)
    lossFun = crit.RmseLoss()
    model = train.trainModel(model,
                             x,
                             y,
                             c,
                             lossFun,
                             nEpoch=nEpoch,
                             miniBatch=[100, 30])
    modelName = 'test-LSTM'
    train.saveModel(outFolder, model, nEpoch, modelName=modelName)

    for k in dLst:
        sd = utils.time.t2dt(ty1[0]) - dt.timedelta(days=k)
        ed = utils.time.t2dt(ty1[1]) - dt.timedelta(days=k)
        df2 = hydroDL.data.dbCsv.DataframeCsv(rootDB=rootDB,
                                              subset='CONUSv4f1',
                                              tRange=[sd, ed])
        obs = df2.getDataTs('SMAP_AM', doNorm=True, rmNan=False)

        model = rnn.LstmCloseModel(nx=nx, ny=ny, hiddenSize=64)
        lossFun = crit.RmseLoss()
        model = train.trainModel(model, (x, obs),
                                 y,
                                 c,
                                 lossFun,
Пример #2
0
    # z2 = interp.interpNan1d(z2, mode='pre')
    xz2 = np.concatenate([x1, z2], axis=2)

    ny = 1
    nx = x1.shape[-1] + c1.shape[-1]
    lossFun = crit.RmseLoss()

    # model1 = rnn.CudnnLstmModel(nx=nx, ny=ny, hiddenSize=64)
    # model1 = train.trainModel(
    #     model1, x1, y1, c1, lossFun, nEpoch=nEpoch, miniBatch=(50, 365))
    # train.saveModel(outFolder, model1, nEpoch, modelName='LSTM')

    model2 = rnn.CudnnLstmModel(nx=nx + 1, ny=ny, hiddenSize=64)
    model2 = train.trainModel(
        model2, xz1, y1, c1, lossFun, nEpoch=nEpoch, miniBatch=(50, 365))
    train.saveModel(outFolder, model2, nEpoch, modelName='DA-1')

    model3 = rnn.CudnnLstmModel(nx=nx + 1, ny=ny, hiddenSize=64)
    model3 = train.trainModel(
        model3, xz2, y1, c1, lossFun, nEpoch=nEpoch, miniBatch=(50, 365))
    train.saveModel(outFolder, model3, nEpoch, modelName='DA-7')

if 'test' in doLst:
    df2 = camels.DataframeCamels(subset='all', tRange=[20050101, 20150101])
    x2 = df2.getDataTS(varLst=camels.forcingLst, doNorm=True, rmNan=True)
    c2 = df2.getDataConst(varLst=camels.attrLstSel, doNorm=True, rmNan=True)
    yt2 = df2.getDataObs(doNorm=False, rmNan=False).squeeze()

    dfz1 = camels.DataframeCamels(subset='all', tRange=[20041231, 20141231])
    z1 = dfz1.getDataObs(doNorm=True, rmNan=True)
    # z1 = interp.interpNan1d(z1, mode='pre')