Пример #1
0
    def all_distances_sg(self, input_tensor, nodes_ind):
        """distance calculations for tree based model training, with gradient stops.

    Args:
      input_tensor: Tensor of size batch_size x 3 containing user, positive
        item, negative item indices.
      nodes_ind: Tensor of size batch_size x tot_node_batch containing nodes
        indices, where tot_node_batch equals to sum(self.node_batch_per_level).
    Returns:
      user_node_distance: Tensor of size batch_size x tot_node_batch containing
        the distances between the nodes and the user.
      item_node_distance: Tensor of size batch_size x tot_node_batch containing
        the distances between the nodes and the positive item.
      user_item_distance: Tensor of size batch_size x 2 containing
        the distances between the user and the positive and negative items.
    """
        c = tf.math.softplus(self.c)
        users, items, nodes = self.as_hyperbolic_points(
            input_tensor, nodes_ind)
        user_node_distance = hyp_utils.hyp_distance_batch_rhs(
            tf.stop_gradient(users), nodes, c)
        pos_item_node_distance = hyp_utils.hyp_distance_batch_rhs(
            tf.stop_gradient(items[:, 0, :]), nodes, c)
        user_item_distance = hyp_utils.hyp_distance_batch_rhs(users, items, c)
        return user_node_distance, pos_item_node_distance, user_item_distance
Пример #2
0
 def similarity_score(self, lhs, rhs, eval_mode):
   c = tf.math.softplus(self.c)
   if eval_mode and self.rhs_dep_lhs:
     return -hyp_utils.hyp_distance_batch_rhs(lhs, rhs, c)**2
   elif eval_mode and not self.rhs_dep_lhs:
     return -hyp_utils.hyp_distance_all_pairs(lhs, rhs, c)**2
   return -hyp_utils.hyp_distance(lhs, rhs, c)**2