Пример #1
0
    def run(self):
        if self.method == 'train':
            self.train()
        elif self.method == 'build':
            self.gan = hg.GAN(config=self.gan_config, inputs=self.create_input(blank=True))
            if not self.gan.load(self.save_file):
                raise ValidationException("Could not load model: "+ self.save_file)
            self.build()
        elif self.method == 'new':
            self.new()
        elif self.method == 'sample':
            self.gan = hg.GAN(config=self.gan_config, inputs=self.create_input(blank=False))
            if not self.gan.load(self.save_file):
                print("Initializing new model")

            self.sample_forever()
Пример #2
0
    def setup_gan(config, inputs, args):
        if "encode" in config:
            print("CHARGAN")
            gan = CharGAN(config, inputs=inputs)
        else:
            gan = hg.GAN(config, inputs=inputs)
        gan.load(save_file)

        return gan
Пример #3
0
def train(config, args):
    title = "[hypergan] 2d-test " + config_filename
    GlobalViewer.set_options(enabled=args.viewer, title=title, viewer_size=1)
    print("ARGS", args)

    gan = hg.GAN(config,
                 inputs=Custom2DInputDistribution(
                     {"batch_size": args.batch_size}))
    gan.name = config_filename
    if gan.config.use_latent:
        accuracy_x_to_g = lambda: distribution_accuracy(
            gan.inputs.next(1), gan.generator(gan.latent.next()))
        accuracy_g_to_x = lambda: distribution_accuracy(
            gan.generator(gan.latent.next()), gan.inputs.next(1))
    else:
        accuracy_x_to_g = lambda: distribution_accuracy(
            gan.inputs.next(1), gan.generator(gan.inputs.next()))
        accuracy_g_to_x = lambda: distribution_accuracy(
            gan.generator(gan.inputs.next()), gan.inputs.next(1))

    sampler = Custom2DSampler(gan)
    gan.selected_sampler = sampler

    samples = 0
    steps = args.steps
    sample_file = "samples/" + config_filename + "/000000.png"
    os.makedirs(os.path.expanduser(os.path.dirname(sample_file)),
                exist_ok=True)
    sampler.sample(sample_file, args.save_samples)

    metrics = [accuracy_x_to_g, accuracy_g_to_x]
    sum_metrics = [0 for metric in metrics]
    broken = False
    for i in range(steps):
        if broken:
            break
        gan.step()

        if args.viewer and i % args.sample_every == 0:
            samples += 1
            print("Sampling " + str(samples))
            sample_file = "samples/" + config_filename + "/%06d.png" % (
                samples)
            sampler.sample(sample_file, args.save_samples)

        if i % 100 == 0:
            for k, metric in enumerate(metrics):
                _metric = metric().cpu().detach().numpy()
                sum_metrics[k] += _metric
                if not np.isfinite(_metric):
                    broken = True
                    break

    return sum_metrics
 def test_config(self):
     with self.test_session():
         config = {
             'd_learn_rate': 1e-3,
             'g_learn_rate': 1e-3,
             'd_trainer': 'rmsprop',
             'g_trainer': 'adam'
         }
         gan = hg.GAN()
         trainer = AlternatingTrainer(gan, config)
         self.assertEqual(trainer.config.d_learn_rate, 1e-3)
Пример #5
0
def train(config, args):
    save_file = "save/chargan/model.ckpt"
    with tf.device(args.device):
        text_input = TextInput(config, args.batch_size, one_hot=one_hot)
        gan = hg.GAN(config, inputs=text_input)
        gan.create()

        if(args.action != 'search' and os.path.isfile(save_file+".meta")):
            gan.load(save_file)

        with gan.session.as_default():
            text_input.table.init.run()
        tf.train.start_queue_runners(sess=gan.session)

        s = [int(g) for g in gan.generator.sample.get_shape()]
        x_0 = gan.session.run(gan.inputs.x)
        z_0 = gan.session.run(gan.encoder.z)

        ax_sum = 0
        ag_sum = 0
        diversity = 0.00001
        dlog = 0
        last_i = 0
        samples = 0

        vocabulary = text_input.get_vocabulary()

        for i in range(args.steps):
            gan.step()

            if args.action == 'train' and i % args.save_every == 0 and i > 0:
                print("saving " + save_file)
                gan.save(save_file)


            if i % args.sample_every == 0:
                g, x_val = gan.session.run([gan.generator.sample, gan.inputs.x], {gan.encoder.z: z_0})
                bs = np.shape(x_val)[0]
                samples+=1
                print("X: "+text_input.sample_output(x_val[0]))
                print("G:")
                for j, g0 in enumerate(g):
                    if j > 4:
                        break

                    print(text_input.sample_output(g0))

        if args.config is None:
            with open("sequence-results-10k.csv", "a") as myfile:
                myfile.write(config_name+","+str(ax_sum)+","+str(ag_sum)+","+ str(ax_sum+ag_sum)+","+str(ax_sum*ag_sum)+","+str(dlog)+","+str(diversity)+","+str(ax_sum*ag_sum*(1/diversity))+","+str(last_i)+"\n")
        tf.reset_default_graph()
        gan.session.close()
Пример #6
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config, inputs=inputs, name=args.config)

    if (os.path.isfile(save_file + ".meta")):
        gan.load(save_file)

    tf.train.start_queue_runners(sess=gan.session)

    config_name = args.config
    GlobalViewer.title = "[hypergan] colorizer " + config_name
    GlobalViewer.enabled = args.viewer

    return gan
Пример #7
0
def train(config, args):
    title = "[hypergan] 2d-test " + args.config
    GlobalViewer.title = title
    GlobalViewer.enabled = args.viewer

    with tf.device(args.device):
        config.generator['end_features'] = 2
        config.generator["class"] = "class:__main__.Custom2DGenerator"  # TODO
        config.discriminator[
            "class"] = "class:__main__.Custom2DDiscriminator"  # TODO
        gan = hg.GAN(config, inputs=Custom2DInputDistribution(args))
        gan.name = config_name

        accuracy_x_to_g = distribution_accuracy(gan.inputs.x,
                                                gan.generator.sample)
        accuracy_g_to_x = distribution_accuracy(gan.generator.sample,
                                                gan.inputs.x)

        sampler = Custom2DSampler(gan)

        tf.train.start_queue_runners(sess=gan.session)
        samples = 0
        steps = args.steps
        sampler.sample("samples/000000.png", args.save_samples)

        metrics = [accuracy_x_to_g, accuracy_g_to_x]
        sum_metrics = [0 for metric in metrics]
        for i in range(steps):
            gan.step()

            if args.viewer and i % args.sample_every == 0:
                samples += 1
                print("Sampling " + str(samples), args.save_samples)
                sample_file = "samples/%06d.png" % (samples)
                sampler.sample(sample_file, args.save_samples)

            if i > steps * 9.0 / 10:
                for k, metric in enumerate(gan.session.run(metrics)):
                    sum_metrics[k] += metric
            if i % 300 == 0:
                for k, metric in enumerate(gan.metrics().keys()):
                    metric_value = gan.session.run(gan.metrics()[metric])
                    print("--", metric, metric_value)
                    if math.isnan(metric_value) or math.isinf(metric_value):
                        print("Breaking due to invalid metric")
                        return None

        tf.reset_default_graph()
        gan.session.close()

    return sum_metrics
Пример #8
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config, inputs=inputs)

    gan.create()

    if (args.action != 'search' and os.path.isfile(save_file + ".meta")):
        gan.load(save_file)

    with tf.device(args.device):
        with gan.session.as_default():
            inputs.table.init.run()
    tf.train.start_queue_runners(sess=gan.session)

    return gan
Пример #9
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config=config, inputs=inputs)
    gan.create()

    if (args.action != 'search' and os.path.isfile(save_file + ".meta")):
        gan.load(save_file)

    tf.train.start_queue_runners(sess=gan.session)
    config_name = args.config
    title = "[hypergan] autoencode " + config_name
    GlobalViewer.title = title
    GlobalViewer.enabled = args.viewer

    return gan
 def test_create(self):
     with self.test_session():
         remove_d_config = hg.Configuration.default()
         remove_d_config['discriminator'] = None
         remove_d_config['loss'] = None
         remove_d_config['trainer'] = None
         gan = hg.GAN(config=remove_d_config, inputs=MockInput())
         discriminator = AutoencoderDiscriminator(gan, config)
         gan.encoder = gan.create_component(gan.config.encoder)
         gan.encoder.create()
         gan.generator = gan.create_component(gan.config.generator)
         gan.generator.create()
         net = discriminator.create()
         gan.create()
         self.assertEqual(int(net.get_shape()[1]), 32)
Пример #11
0
def mock_gan(batch_size=1, y=1, config=None):
    mock_config = config or hc.Config({
        "latent": {
            "class":
            "function:hypergan.distributions.uniform_distribution.UniformDistribution",
            "max":
            1,
            "min":
            -1,
            "projections":
            ["function:hypergan.distributions.uniform_distribution.identity"],
            "z":
            128
        },
        "generator": {
            "class":
            "class:hypergan.discriminators.configurable_discriminator.ConfigurableDiscriminator",
            "defaults": {
                "activation": "tanh",
                "initializer": "he_normal"
            },
            "layers": ["linear 32*32*1 activation=null"]
        },
        "discriminator": {
            "class":
            "class:hypergan.discriminators.configurable_discriminator.ConfigurableDiscriminator",
            "defaults": {
                "activation": "tanh",
                "initializer": "he_normal"
            },
            "layers": ["linear 1 activation=null"]
        },
        "loss": {
            "class": "function:hypergan.losses.ragan_loss.RaganLoss",
            "reduce": "reduce_mean"
        },
        "trainer": {
            "class":
            "function:hypergan.trainers.alternating_trainer.AlternatingTrainer",
            "optimizer": {
                "class":
                "function:tensorflow.python.training.adam.AdamOptimizer",
                "learn_rate": 1e-4
            }
        }
    })
    return hg.GAN(config=mock_config,
                  inputs=MockInput(batch_size=batch_size, y=y))
Пример #12
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config, inputs=inputs)

    gan.create()

    if (args.action != 'search' and os.path.isfile(save_file + ".meta")):
        gan.load(save_file)

    tf.train.start_queue_runners(sess=gan.session)

    GlobalViewer.enable()
    config_name = args.config
    title = "[hypergan] colorizer " + config_name
    GlobalViewer.window.set_title(title)

    return gan
Пример #13
0
def train(config, args):
    if (args.viewer):
        title = "[hypergan] 2d-test " + args.config
        GlobalViewer.title = title
        GlobalViewer.enabled = args.viewer

    with tf.device(args.device):
        config.generator['end_features'] = 2
        gan = hg.GAN(config, inputs=Custom2DInputDistribution(args))
        gan.discriminator = Custom2DDiscriminator(gan, config.discriminator)
        gan.generator = Custom2DGenerator(gan, config.generator)
        gan.encoder = gan.create_component(gan.config.encoder)
        gan.encoder.create()
        gan.generator.create()
        gan.discriminator.create()
        gan.create()

        accuracy_x_to_g = batch_accuracy(gan.inputs.x, gan.generator.sample)
        accuracy_g_to_x = batch_accuracy(gan.generator.sample, gan.inputs.x)

        sampler = Custom2DSampler(gan)

        tf.train.start_queue_runners(sess=gan.session)
        samples = 0
        steps = args.steps
        sampler.sample("samples/000000.png", args.save_samples)

        metrics = [accuracy_x_to_g, accuracy_g_to_x]
        sum_metrics = [0 for metric in metrics]
        for i in range(steps):
            gan.step()

            if args.viewer and i % args.sample_every == 0:
                samples += 1
                print("Sampling " + str(samples), args.save_samples)
                sample_file = "samples/%06d.png" % (samples)
                sampler.sample(sample_file, args.save_samples)

            if i > steps * 9.0 / 10:
                for k, metric in enumerate(gan.session.run(metrics)):
                    sum_metrics[k] += metric

        tf.reset_default_graph()
        gan.session.close()

    return sum_metrics
Пример #14
0
    def train(self):
        i=0
        if(self.args.ipython):
            import fcntl
            fd = sys.stdin.fileno()
            fl = fcntl.fcntl(fd, fcntl.F_GETFL)
            fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK)

        self.gan = hg.GAN(config=self.gan_config, inputs=self.create_input(), device=self.args.parameter_server_device)
        self.gan.cli = self #TODO remove this link
        self.gan.inputs.next()
        self.lazy_create()

        self.trainable_gan = hg.TrainableGAN(self.gan, save_file = self.save_file, devices = self.devices, backend_name = self.args.backend)

        if self.trainable_gan.load():
            print("Model loaded")
        else:
            print("Initializing new model")

        self.trainable_gan.sample(self.sampler, self.sample_path)

        while((self.steps < self.total_steps or self.total_steps == -1) and not self.gan.destroy):
            self.step()
            if self.should_sample:
                self.should_sample = False
                self.sample(False)

            if (self.args.save_every != None and
                self.args.save_every != -1 and
                self.args.save_every > 0 and
                self.steps % self.args.save_every == 0):
                print(" |= Saving network")
                self.trainable_gan.save()
                self.create_path(self.advSavePath+'advSave.txt')
                if os.path.isfile(self.advSavePath+'advSave.txt'):
                    with open(self.advSavePath+'advSave.txt', 'w') as the_file:
                        the_file.write(str(self.samples)+"\n")
            if self.args.ipython:
                self.check_stdin()
        print("Done training model.  Saving")
        self.trainable_gan.save()
        print("============================")
        print("HyperGAN model trained")
        print("============================")
Пример #15
0
def train(config, args):
    title = "[hypergan] 2d-test " + args.config
    GlobalViewer.title = title
    GlobalViewer.enabled = args.viewer

    with tf.device(args.device):
        config.generator["class"]="class:__main__.Sequence2DGenerator"
        config.discriminator["class"]="class:__main__.Sequence2DDiscriminator"
        gan = hg.GAN(config, inputs = Sequence2DInputDistribution(args))

        sampler = Sequence2DSampler(gan)

        tf.train.start_queue_runners(sess=gan.session)
        samples = 0
        steps = args.steps
        sampler.sample("samples/000000.png", args.save_samples)

        #metrics = [accuracy_x_to_g, accuracy_g_to_x]
        #sum_metrics = [0 for metric in metrics]
        for i in range(steps):
            gan.step({gan.inputs.current_step: i})

            if args.viewer and i % args.sample_every == 0:
                samples += 1
                print("Sampling "+str(samples), args.save_samples)
                sample_file="samples/%06d.png" % (samples)
                sampler.sample(sample_file, args.save_samples)

            #if i > steps * 9.0/10:
            #    for k, metric in enumerate(gan.session.run(metrics)):
            #        sum_metrics[k] += metric 
            #if i % 300 == 0:
            #    for k, metric in enumerate(gan.metrics.keys()):
            #        metric_value = gan.session.run(gan.metrics[metric])
            #        print("--", metric,  metric_value)
            #        if math.isnan(metric_value) or math.isinf(metric_value):
            #            print("Breaking due to invalid metric")
            #            return None

        tf.reset_default_graph()
        gan.session.close()

    return {}#sum_metrics
Пример #16
0
def optimize_g(g, d, config, initial_graph):
    config['generator'] = g
    config['discriminators'] = [d]

    x, y, f, num_labels, examples_per_epoch = image_loader.labelled_image_tensors_from_directory(
        args.directory,
        config['batch_size'],
        channels=channels,
        format=args.format,
        crop=args.crop,
        width=width,
        height=height)
    initial_graph = {
        'x': x,
        'y': y,
        'f': f,
        'num_labels': num_labels,
        'examples_per_epoch': examples_per_epoch
    }

    gan = hg.GAN(config, initial_graph)
    return gan
Пример #17
0
 def test_validate(self):
     with self.assertRaises(ValidationException):
         PyramidDiscriminator(hg.GAN(), {})
Пример #18
0
 def test_config(self):
     with self.test_session():
         loss = SoftmaxLoss(hg.GAN(), loss_config)
         self.assertTrue(loss.config.test)
Пример #19
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config, inputs=inputs)

    gan.load(save_file)

    return gan
Пример #20
0
 def test_config(self):
     with self.test_session():
         loss = LeastSquaresLoss(hg.GAN(), loss_config)
         self.assertTrue(loss.config.test)
Пример #21
0
def train():
    selector = hg.config.selector(args)
    config_name = "2d-measure-accuracy-" + str(uuid.uuid4())

    config = selector.random_config()
    config_filename = os.path.expanduser('~/.hypergan/configs/' + config_name +
                                         '.json')

    trainers = []

    rms_opts = {
        'g_momentum': [0, 0.1, 0.01, 1e-6, 1e-5, 1e-1, 0.9, 0.999, 0.5],
        'd_momentum': [0, 0.1, 0.01, 1e-6, 1e-5, 1e-1, 0.9, 0.999, 0.5],
        'd_decay': [0.8, 0.9, 0.99, 0.999, 0.995, 0.9999, 1],
        'g_decay': [0.8, 0.9, 0.99, 0.999, 0.995, 0.9999, 1],
        'clipped_gradients': [False, 1e-2],
        'clipped_d_weights': [False, 1e-2],
        'd_learn_rate': [1e-3, 1e-4, 5e-4, 1e-6, 4e-4, 5e-5],
        'g_learn_rate': [1e-3, 1e-4, 5e-4, 1e-6, 4e-4, 5e-5]
    }

    stable_rms_opts = {
        "clipped_d_weights": 0.01,
        "clipped_gradients": False,
        "d_decay": 0.995,
        "d_momentum": 1e-05,
        "d_learn_rate": 0.001,
        "g_decay": 0.995,
        "g_momentum": 1e-06,
        "g_learn_rate": 0.0005,
    }

    trainers.append(hg.trainers.rmsprop_trainer.config(**rms_opts))

    adam_opts = {}

    adam_opts = {
        'd_learn_rate': [1e-3, 1e-4, 5e-4, 1e-2, 1e-6],
        'g_learn_rate': [1e-3, 1e-4, 5e-4, 1e-2, 1e-6],
        'd_beta1': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8],
        'd_beta2': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8],
        'g_beta1': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8],
        'g_beta2': [0.9, 0.99, 0.999, 0.1, 0.01, 0.2, 1e-8],
        'd_epsilon': [1e-8, 1, 0.1, 0.5],
        'g_epsilon': [1e-8, 1, 0.1, 0.5],
        'd_clipped_weights': [False, 0.01],
        'clipped_gradients': [False, 0.01]
    }

    trainers.append(hg.trainers.adam_trainer.config(**adam_opts))

    sgd_opts = {
        'd_learn_rate': [1e-3, 1e-4, 5e-4, 1e-2, 1e-6],
        'g_learn_rate': [1e-3, 1e-4, 5e-4, 1e-2, 1e-6],
        'd_clipped_weights': [False, 0.01],
        'clipped_gradients': [False, 0.01]
    }

    trainers.append(hg.trainers.sgd_trainer.config(**sgd_opts))

    encoders = []

    projections = []
    projections.append([
        hg.encoders.uniform_encoder.modal, hg.encoders.uniform_encoder.identity
    ])
    projections.append([
        hg.encoders.uniform_encoder.modal, hg.encoders.uniform_encoder.sphere,
        hg.encoders.uniform_encoder.identity
    ])
    projections.append([
        hg.encoders.uniform_encoder.binary, hg.encoders.uniform_encoder.sphere
    ])
    projections.append([
        hg.encoders.uniform_encoder.sphere,
        hg.encoders.uniform_encoder.identity
    ])
    projections.append([
        hg.encoders.uniform_encoder.modal, hg.encoders.uniform_encoder.sphere
    ])
    projections.append([
        hg.encoders.uniform_encoder.sphere,
        hg.encoders.uniform_encoder.identity,
        hg.encoders.uniform_encoder.gaussian
    ])
    encoder_opts = {
        'z': [16],
        'modes': [2, 4, 8, 16],
        'projections': projections
    }

    stable_encoder_opts = {
        "max":
        1,
        "min":
        -1,
        "modes":
        8,
        "projections": [[
            "function:hypergan.encoders.uniform_encoder.modal",
            "function:hypergan.encoders.uniform_encoder.sphere",
            "function:hypergan.encoders.uniform_encoder.identity"
        ]],
        "z":
        16
    }

    losses = []

    lamb_loss_opts = {
        'reverse': [True, False],
        'reduce': [
            tf.reduce_mean, hg.losses.wgan_loss.linear_projection,
            tf.reduce_sum, tf.reduce_logsumexp
        ],
        'labels': [[-1, 1, 0], [0, 1, 1], [0, -1, -1], [1, -1, 0], [0, -1, 1],
                   [0, 1, -1], [0, 0.5, -0.5], [0.5, -0.5, 0], [0.5, 0, -0.5]],
        'alpha': [
            0, 1e-3, 1e-2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99,
            0.999
        ],
        'beta': [
            0, 1e-3, 1e-2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99,
            0.999
        ]
    }
    lsgan_loss_opts = {
        'reduce': [
            tf.reduce_mean, hg.losses.wgan_loss.linear_projection,
            tf.reduce_sum, tf.reduce_logsumexp
        ],
        'labels': [[-1, 1, 0], [0, 1, 1], [0, -1, -1], [1, -1, 0], [0, -1, 1],
                   [0, 1, -1], [0, 0.5, -0.5], [0.5, -0.5, 0], [0.5, 0, -0.5]]
    }
    stable_loss_opts = {
        "alpha": 0.5,
        "beta": [0.5, 0.8],
        "discriminator": None,
        "label_smooth": 0.26111111111111107,
        "labels": [[0, -1, -1]],
        "reduce": "function:tensorflow.python.ops.math_ops.reduce_mean",
        "reverse": True
    }
    #losses.append([hg.losses.wgan_loss.config(**loss_opts)])
    losses.append([hg.losses.lamb_gan_loss.config(**lamb_loss_opts)])
    #losses.append([hg.losses.lamb_gan_loss.config(**stable_loss_opts)])
    #losses.append([hg.losses.lamb_gan_loss.config(**stable_loss_opts)])
    losses.append([hg.losses.lsgan_loss.config(**lsgan_loss_opts)])

    #encoders.append([hg.encoders.uniform_encoder.config(**encoder_opts)])
    encoders.append(
        [hg.encoders.uniform_encoder.config(**stable_encoder_opts)])
    custom_config = {
        'model': args.config,
        'batch_size': args.batch_size,
        'trainer': trainers,
        'generator': custom_generator_config(),
        'discriminators': [[custom_discriminator_config()]],
        'losses': losses,
        'encoders': encoders
    }

    custom_config_selector = hc.Selector()
    for key, value in custom_config.items():
        custom_config_selector.set(key, value)
        print("Set ", key, value)

    custom_config_selection = custom_config_selector.random_config()

    for key, value in custom_config_selection.items():
        config[key] = value

    config['dtype'] = tf.float32
    config = hg.config.lookup_functions(config)

    def circle(x):
        spherenet = tf.square(x)
        spherenet = tf.reduce_sum(spherenet, 1)
        lam = tf.sqrt(spherenet)
        return x / tf.reshape(lam, [int(lam.get_shape()[0]), 1])

    def modes(x):
        return tf.round(x * 2) / 2.0

    if args.distribution == 'circle':
        x = tf.random_normal([args.batch_size, 2])
        x = circle(x)
    elif args.distribution == 'modes':
        x = tf.random_uniform([args.batch_size, 2], -1, 1)
        x = modes(x)
    elif args.distribution == 'sin':
        x = tf.random_uniform((1, args.batch_size), -10.5, 10.5)
        x = tf.transpose(x)
        r_data = tf.random_normal((args.batch_size, 1), mean=0, stddev=0.1)
        xy = tf.sin(0.75 * x) * 7.0 + x * 0.5 + r_data * 1.0
        x = tf.concat([xy, x], 1) / 16.0
    elif args.distribution == 'arch':
        offset1 = tf.random_uniform((1, args.batch_size), -10, 10)
        xa = tf.random_uniform((1, 1), 1, 4)
        xb = tf.random_uniform((1, 1), 1, 4)
        x1 = tf.random_uniform((1, args.batch_size), -1, 1)
        xcos = tf.cos(x1 * np.pi + offset1) * xa
        xsin = tf.sin(x1 * np.pi + offset1) * xb
        x = tf.transpose(tf.concat([xcos, xsin], 0)) / 16.0

    initial_graph = {
        'x': x,
        'num_labels': 1,
    }

    print("Starting training for: " + config_filename)
    selector.save(config_filename, config)

    with tf.device(args.device):
        gan = hg.GAN(config, initial_graph)

        accuracy_x_to_g = batch_accuracy(gan.graph.x, gan.graph.g[0])
        accuracy_g_to_x = batch_accuracy(gan.graph.g[0], gan.graph.x)
        s = [int(g) for g in gan.graph.g[0].get_shape()]
        slice1 = tf.slice(gan.graph.g[0], [0, 0], [s[0] // 2, -1])
        slice2 = tf.slice(gan.graph.g[0], [s[0] // 2, 0], [s[0] // 2, -1])
        accuracy_g_to_g = batch_accuracy(slice1, slice2)
        x_0 = gan.sess.run(gan.graph.x)
        z_0 = gan.sess.run(gan.graph.z[0])

        gan.initialize_graph()

        ax_sum = 0
        ag_sum = 0
        diversity = 0.00001
        dlog = 0
        last_i = 0

        tf.train.start_queue_runners(sess=gan.sess)
        for i in range(500000):
            d_loss, g_loss = gan.train()

            if (np.abs(d_loss) > 100 or np.abs(g_loss) > 100):
                ax_sum = ag_sum = 100000.00
                break

            if i % 1000 == 0 and i != 0:
                ax, ag, agg, dl = gan.sess.run([
                    accuracy_x_to_g, accuracy_g_to_x, accuracy_g_to_g,
                    gan.graph.d_log
                ], {
                    gan.graph.x: x_0,
                    gan.graph.z[0]: z_0
                })
                print("ERROR", ax, ag)
                if np.abs(ax) > 50.0 or np.abs(ag) > 50.0:
                    ax_sum = ag_sum = 100000.00
                    break

            #if(i % 10000 == 0 and i != 0):
            #    g_vars = [var for var in tf.trainable_variables() if 'g_' in var.name]
            #    init = tf.initialize_variables(g_vars)
            #    gan.sess.run(init)

            if (i > 490000):
                ax, ag, agg, dl = gan.sess.run([
                    accuracy_x_to_g, accuracy_g_to_x, accuracy_g_to_g,
                    gan.graph.d_log
                ], {
                    gan.graph.x: x_0,
                    gan.graph.z[0]: z_0
                })
                diversity += agg
                ax_sum += ax
                ag_sum += ag
                dlog = dl

        with open("results.csv", "a") as myfile:
            myfile.write(config_name + "," + str(ax_sum) + "," + str(ag_sum) +
                         "," + str(ax_sum + ag_sum) + "," +
                         str(ax_sum * ag_sum) + "," + str(dlog) + "," +
                         str(diversity) + "," + str(ax_sum * ag_sum *
                                                    (1 / diversity)) + "," +
                         str(last_i) + "\n")
        tf.reset_default_graph()
        gan.sess.close()
Пример #22
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config, inputs=inputs, batch_size=args.batch_size)
    gan.inputs.gradient_penalty_label = gan.inputs.feed_y # TODO: Our X dimensions dont always match the G.  This causes gradient_penalty to fail.
    gan.create()

    return gan
Пример #23
0
def setup_gan(config, inputs, args):
    gan = hg.GAN(config, inputs=inputs, batch_size=args.batch_size)
    return gan
Пример #24
0
config['x_dims'] = [height, width]
config['channels'] = channels
config['model'] = 'colorizer'
config = hg.config.lookup_functions(config)

initial_graph = {
    'x': x,
    'y': y,
    'f': f,
    'num_labels': num_labels,
    'examples_per_epoch': examples_per_epoch
}

with tf.device(args.device):
    gan = hg.GAN(config,
                 initial_graph,
                 graph_type='generator',
                 device=args.device)

    save_file = os.path.expanduser("~/.hypergan/saves/colorizer.ckpt")
    gan.load_or_initialize_graph(save_file)

    tf.train.start_queue_runners(sess=gan.sess)
    build_file = os.path.expanduser(
        "~/.hypergan/builds/colorizer/generator.ckpt")

    saver = tf.train.Saver()
    saver.save(gan.sess, build_file)
    print("Saved generator to ", build_file)

    tf.reset_default_graph()
    self.sess.close()
Пример #25
0
 def test_cli(self):
     with self.test_session():
         gan = hg.GAN()
         args = {}
         cli = hg.CLI(gan, args)
         self.assertEqual(cli.gan, gan)
Пример #26
0
def mock_gan(batch_size=1, y=1):
    return hg.GAN(inputs=MockInput(batch_size=batch_size, y=y))
Пример #27
0
                        height=height)

config['y_dims']=num_labels
config['x_dims']=[height,width]
config['channels']=channels
config = hg.config.lookup_functions(config)

initial_graph = {
    'x':x,
    'y':y,
    'f':f,
    'num_labels':num_labels,
    'examples_per_epoch':examples_per_epoch
}

gan = hg.GAN(config, initial_graph)

save_file = os.path.expanduser("~/.hypergan/saves/super-resolution.ckpt")
gan.load_or_initialize_graph(save_file)

tf.train.start_queue_runners(sess=gan.sess)
for i in range(1000000):
    d_loss, g_loss = gan.train()

    if i % args.save_every == 0 and i > 0:
        print("Saving " + save_file)
        gan.save(save_file)

    if i % args.sample_every == 0 and i > 0:
        print("Sampling "+str(i))
        sample_file = "samples/"+str(i)+".png"
Пример #28
0
import tensorflow as tf
import hyperchamber as hc
import numpy as np
from hypergan.gan_component import ValidationException
from hypergan.ops import TensorflowOps
from hypergan.gan_component import GANComponent
from hypergan.multi_component import MultiComponent
import hypergan as hg

from unittest.mock import MagicMock

gan = hg.GAN()
component = GANComponent(gan=gan, config={'test': True})


class GanComponentTest(tf.test.TestCase):
    def test_config(self):
        with self.test_session():
            self.assertEqual(component.config.test, True)

    def test_validate(self):
        with self.test_session():
            self.assertEqual(component.validate(), [])

    def test_gan(self):
        with self.test_session():
            self.assertEqual(component.gan, gan)

    def test_ops(self):
        with self.test_session():
            self.assertEqual(type(component.ops), TensorflowOps)