Пример #1
0
def run(script_corr):
    """Three different parsers:
    w_parser[('biases', i_layer)] : neural net weights/biases per layer for a single  script
    script_parser[i_script]       : weights vector for each script
    transform_parser[i_layer]     : transform matrix (scripts x scripts) for each alphabet"""
    RS = RandomState((seed, "top_rs"))
    train_data, valid_data, tests_data = omniglot.load_data_split(
        [11, 2, 2], RS, num_alphabets=N_scripts)
    w_parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
    N_weights = w_parser.vect.size

    uncorrelated_mat = np.eye(N_scripts)
    fully_correlated_mat = np.full((N_scripts, N_scripts), 1.0 / N_scripts)
    transform_mat = (1 - script_corr
                     ) * uncorrelated_mat + script_corr * fully_correlated_mat
    transform_mat = transform_mat
    transform_parser = VectorParser()
    for i_layer in range(N_layers):
        if i_layer == N_layers - 1:
            transform_parser[i_layer] = uncorrelated_mat
        else:
            transform_parser[i_layer] = transform_mat

    script_parser = VectorParser()
    for i_script in range(N_scripts):
        script_parser[i_script] = np.zeros(N_weights)

    def transform_weights(all_z_vect, transform_vect, i_script_out):
        all_z = script_parser.new_vect(all_z_vect)
        transform = transform_parser.new_vect(transform_vect)
        W = OrderedDict(
        )  # Can't use parser because setting plain array ranges with funkyyak nodes not yet supported
        for k in w_parser.idxs_and_shapes.keys():
            W[k] = 0.0
        for i_layer in range(N_layers):
            script_weightings = transform[i_layer][i_script_out, :]
            for i_script in range(N_scripts):
                z_i_script = w_parser.new_vect(all_z[i_script])
                script_weighting = script_weightings[i_script]
                W[('biases',
                   i_layer)] += z_i_script[('biases',
                                            i_layer)] * script_weighting
                W[('weights',
                   i_layer)] += z_i_script[('weights',
                                            i_layer)] * script_weighting
        return np.concatenate([v.ravel() for v in W.values()])

    def loss_from_latents(z_vect, transform_vect, i_script, data):
        w_vect = transform_weights(z_vect, transform_vect, i_script)
        return loss_fun(w_vect, **data)

    def regularization(z_vect):
        return np.dot(z_vect, z_vect) * np.exp(log_L2_init)

    results = defaultdict(list)

    def hyperloss(transform_vect, i_hyper, record_results=False):
        def primal_stochastic_loss(z_vect, transform_vect, i_primal):
            RS = RandomState((seed, i_hyper, i_primal))
            loss = 0.0
            for _ in range(N_scripts_per_iter):
                i_script = RS.randint(N_scripts)
                N_train = train_data[i_script]['X'].shape[0]
                idxs = RS.permutation(N_train)[:batch_size]
                minibatch = dictslice(train_data[i_script], idxs)
                loss += loss_from_latents(z_vect, transform_vect, i_script,
                                          minibatch)
            reg = regularization(z_vect)
            if i_primal % 20 == 0:
                print "Iter {0}, loss {1}, reg {2}".format(
                    i_primal, getval(loss), getval(reg))
                print "Full losses: train: {0}, valid: {1}".format(
                    total_loss(train_data, getval(z_vect)),
                    total_loss(valid_data, getval(z_vect)))
            return loss + reg

        def total_loss(data, z_vect):
            return np.mean([
                loss_from_latents(z_vect, transform_vect, i_script,
                                  data[i_script])
                for i_script in range(N_scripts)
            ])

        z_vect_0 = RS.randn(
            script_parser.vect.size) * np.exp(log_initialization_scale)
        z_vect_final = sgd(grad(primal_stochastic_loss),
                           transform_vect,
                           z_vect_0,
                           alpha,
                           beta,
                           N_iters,
                           callback=None)
        valid_loss = total_loss(valid_data, z_vect_final)
        if record_results:
            results['valid_loss'].append(valid_loss)
            results['train_loss'].append(total_loss(train_data, z_vect_final))
            # results['tests_loss'].append(total_loss(tests_data, z_vect_final))
        return valid_loss

    hyperloss(transform_parser.vect, 0, record_results=True)
    return results['train_loss'][-1], results['valid_loss'][-1]
Пример #2
0
def run(script_corr):
    """Three different parsers:
    w_parser[('biases', i_layer)] : neural net weights/biases per layer for a single  script
    script_parser[i_script]       : weights vector for each script
    transform_parser[i_layer]     : transform matrix (scripts x scripts) for each alphabet"""
    RS = RandomState((seed, "top_rs"))
    train_data, valid_data, tests_data = omniglot.load_data_split([11, 2, 2], RS, num_alphabets=N_scripts)
    w_parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
    N_weights = w_parser.vect.size

    uncorrelated_mat = np.eye(N_scripts)
    fully_correlated_mat = np.full((N_scripts, N_scripts), 1.0 / N_scripts)
    transform_mat = (1 - script_corr) * uncorrelated_mat + script_corr * fully_correlated_mat
    transform_parser = VectorParser()
    for i_layer in range(N_layers):
        if i_layer > 0:
            transform_parser[i_layer] = uncorrelated_mat
        else:
            transform_parser[i_layer] = transform_mat

    script_parser = VectorParser()
    for i_script in range(N_scripts):
        script_parser[i_script] = np.zeros(N_weights)

    def transform_weights(all_z_vect, transform_vect, i_script_out):
        all_z     =    script_parser.new_vect(    all_z_vect)
        transform = transform_parser.new_vect(transform_vect)
        W = OrderedDict() # Can't use parser because setting plain array ranges with funkyyak nodes not yet supported
        for k in w_parser.idxs_and_shapes.keys():
            W[k] = 0.0
        for i_layer in range(N_layers):
            script_weightings = transform[i_layer][i_script_out, :]
            for i_script in range(N_scripts):
                z_i_script = w_parser.new_vect(all_z[i_script])
                script_weighting = script_weightings[i_script]
                W[('biases', i_layer)]  += z_i_script[('biases',  i_layer)] * script_weighting
                W[('weights', i_layer)] += z_i_script[('weights', i_layer)] * script_weighting
        return np.concatenate([v.ravel() for v in W.values()])

    def loss_from_latents(z_vect, transform_vect, i_script, data):
        w_vect = transform_weights(z_vect, transform_vect, i_script)
        return loss_fun(w_vect, **data)

    def regularization(z_vect):
        return np.dot(z_vect, z_vect) * np.exp(log_L2_init)

    results = defaultdict(list)
    def hyperloss(transform_vect, i_hyper, record_results=False):
        def sub_primal_stochastic_loss(z_vect, transform_vect, i_primal, i_script):
            RS = RandomState((seed, i_hyper, i_primal, i_script))
            N_train = train_data[i_script]['X'].shape[0]
            idxs = RS.permutation(N_train)[:batch_size]
            minibatch = dictslice(train_data[i_script], idxs)
            loss = loss_from_latents(z_vect, transform_vect, i_script, minibatch)
            if i_primal % N_thin == 0 and i_script == 0:
                print "Iter {0}, full losses: train: {1}, valid: {2}".format(
                    i_primal,
                    total_loss(train_data, getval(z_vect)),
                    total_loss(valid_data, getval(z_vect)))
            if i_script == 0: # Only add regularization once
                loss += regularization(z_vect)

            return loss

        def total_loss(data, z_vect):
            return np.mean([loss_from_latents(z_vect, transform_vect, i_script, data[i_script])
                            for i_script in range(N_scripts)])

        z_vect_0 = RS.randn(script_parser.vect.size) * np.exp(log_initialization_scale)
        z_vect_final = sgd(grad(sub_primal_stochastic_loss), transform_vect, z_vect_0,
                           alpha, beta, N_iters, N_scripts_per_iter, callback=None)
        valid_loss = total_loss(valid_data, z_vect_final)
        if record_results:
            results['valid_loss'].append(valid_loss)
            results['train_loss'].append(total_loss(train_data, z_vect_final))
            # results['tests_loss'].append(total_loss(tests_data, z_vect_final))
        return valid_loss

    hyperloss(transform_parser.vect, 0, record_results=True)
    return results['train_loss'][-1], results['valid_loss'][-1]
Пример #3
0
def run(script_corr_init):
    """Three different parsers:
    w_parser[('biases', i_layer)] : neural net weights/biases per layer for a single  script
    script_parser[i_script]       : weights vector for each script
    transform_parser[i_layer]     : transform matrix (scripts x scripts) for each alphabet"""
    RS = RandomState((seed, "top_rs"))
    train_data, valid_data, tests_data = omniglot.load_data_split([11, 2, 2], RS, num_alphabets=N_scripts)
    w_parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
    N_weights = w_parser.vect.size
    transform_parser = make_transform(N_scripts, script_corr_init)
    script_parser = VectorParser()
    for i_script in range(N_scripts):
        script_parser[i_script] = np.zeros(N_weights)

    def get_layers(vect):
        layers = []
        for i_layer in range(N_layers):
            weights_by_scripts = vect.reshape((N_scripts, N_weights))
            weights_idxs, _ = w_parser.idxs_and_shapes[("weights", i_layer)]
            biases_idxs, _ = w_parser.idxs_and_shapes[("biases", i_layer)]
            assert weights_idxs.stop == biases_idxs.start
            layer_idxs = slice(weights_idxs.start, biases_idxs.stop)
            layers.append(weights_by_scripts[:, layer_idxs])
        return layers

    def transform_weights(z_vect, transform_vect):
        z_layers = get_layers(z_vect)
        transform = transform_parser.new_vect(transform_vect)
        w_layers = [np.dot(transform[i], z) for i, z in enumerate(z_layers)]
        return np.concatenate(w_layers, axis=1).ravel()

    def total_loss(w_vect, data):
        w = script_parser.new_vect(w_vect)
        return sum([loss_fun(w[i], **script_data) for i, script_data in enumerate(data)])

    def regularization(z_vect):
        return np.dot(z_vect, z_vect) * np.exp(log_L2_init)

    results = defaultdict(list)

    def hyperloss(transform_vect, i_hyper, record_results=True):
        RS = RandomState((seed, i_hyper, "hyperloss"))

        def primal_loss(z_vect, transform_vect, i_primal, record_results):
            RS = RandomState((seed, i_hyper, i_primal, i_script))
            w_vect = transform_weights(z_vect, transform_vect)
            loss = total_loss(w_vect, train_data)
            reg = regularization(z_vect)
            if VERBOSE and record_results and i_primal % N_thin == 0:
                print "Iter {0}: train: {1}, valid: {2}, reg: {3}".format(
                    i_primal, getval(loss) / N_scripts, total_loss(getval(w_vect), valid_data) / N_scripts, getval(reg)
                )
            return loss + reg

        z_vect_0 = RS.randn(script_parser.vect.size) * np.exp(log_initialization_scale)
        z_vect_final = sgd(grad(primal_loss), transform_vect, z_vect_0, alpha, beta, N_iters, callback=None)
        w_vect_final = transform_weights(z_vect_final, transform_vect)
        valid_loss = total_loss(w_vect_final, valid_data)
        if record_results:
            results["valid_loss"].append(getval(valid_loss) / N_scripts)
            results["train_loss"].append(total_loss(w_vect_final, train_data) / N_scripts)
        return valid_loss

    hyperloss(transform_parser.vect, 0)
    return results["train_loss"][-1], results["valid_loss"][-1]
Пример #4
0
def run():
    """Three different parsers:
    w_parser[('biases', i_layer)] : neural net weights/biases per layer for a single  script
    script_parser[i_script]       : weights vector for each script
    transform_parser[i_layer]     : transform matrix (scripts x scripts) for each alphabet"""
    RS = RandomState((seed, "top_rs"))
    train_data, valid_data, tests_data = omniglot.load_data_split(
        [11, 2, 2], RS, num_alphabets=N_scripts)
    w_parser, pred_fun, loss_fun, frac_err = make_nn_funs(layer_sizes)
    N_weights = w_parser.vect.size
    transform_parser = make_transform(N_scripts, script_corr_init)
    script_parser = VectorParser()
    for i_script in range(N_scripts):
        script_parser[i_script] = np.zeros(N_weights)

    def get_layers(vect):
        layers = []
        for i_layer in range(N_layers):
            weights_by_scripts = vect.reshape((N_scripts, N_weights))
            weights_idxs, _ = w_parser.idxs_and_shapes[('weights', i_layer)]
            biases_idxs, _  = w_parser.idxs_and_shapes[('biases',  i_layer)]
            assert weights_idxs.stop == biases_idxs.start
            layer_idxs = slice(weights_idxs.start, biases_idxs.stop)
            layers.append(weights_by_scripts[:, layer_idxs])
        return layers

    def transform_weights(z_vect, transform_vect):
        z_layers = get_layers(z_vect)
        transform = transform_parser.new_vect(transform_vect)
        w_layers = [np.dot(transform[i], z) for i, z in enumerate(z_layers)]
        return np.concatenate(w_layers, axis=1).ravel()

    def total_loss(w_vect, data):
        w = script_parser.new_vect(w_vect)
        return sum([loss_fun(w[i], **script_data) for i, script_data in enumerate(data)])

    def regularization(z_vect):
        return np.dot(z_vect, z_vect) * np.exp(log_L2_init)

    results = defaultdict(list)
    def hyperloss(transform_vect, i_hyper, record_results=True):
        RS = RandomState((seed, i_hyper, "hyperloss"))
        def primal_loss(z_vect, transform_vect, i_primal, record_results=False):
            w_vect = transform_weights(z_vect, transform_vect)
            loss = total_loss(w_vect, train_data)
            reg = regularization(z_vect)
            if VERBOSE and record_results and i_primal % N_thin == 0:
                print "Iter {0}: train: {1}, valid: {2}, reg: {3}".format(
                    i_primal,
                    getval(loss) / N_scripts,
                    total_loss(getval(w_vect), valid_data) / N_scripts,
                    getval(reg))
            return loss + reg

        z_vect_0 = RS.randn(script_parser.vect.size) * np.exp(log_initialization_scale)
        z_vect_final = sgd(grad(primal_loss), transform_vect, z_vect_0,
                           alpha, beta, N_iters, callback=None)
        w_vect_final = transform_weights(z_vect_final, transform_vect)
        valid_loss = total_loss(w_vect_final, valid_data)
        if record_results:
            results['valid_loss'].append(getval(valid_loss) / N_scripts) 
            results['train_loss'].append(total_loss(w_vect_final, train_data) / N_scripts)
            results['tests_loss'].append(total_loss(w_vect_final, tests_data) / N_scripts)
        return valid_loss

    grad_transform = grad(hyperloss)(transform_parser.vect, 0, record_results=False)
    for i, d in enumerate(line_search_dists):
        new_transform_vect = transform_parser.vect - d * grad_transform
        hyperloss(new_transform_vect, 0, record_results=True)
        print "Hyper iter {0}".format(i)
        print "Results", {k : v[-1] for k, v in results.iteritems()}
        
    grad_transform_dict = transform_parser.new_vect(grad_transform).as_dict()
    return results, grad_transform_dict