Пример #1
0
def train_mvn(iv_file, train_list, preproc_file, name, save_tlist,
              append_tlist, output_path, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vr_args = VR.filter_args(**kwargs)
    vr = VR(iv_file, train_list, preproc, **vr_args)
    x = vr.read()

    t1 = time.time()

    model = MVN(name=name)
    model.fit(x)

    logging.info('Elapsed time: %.2f s.' % (time.time() - t1))

    if save_tlist:
        if append_tlist and preproc is not None:
            preproc.append(model)
            model = preproc
        else:
            model = TransformList(model)

    model.save(output_path)
Пример #2
0
def plot_vector_hist(iv_file, v_list, preproc_file, output_path, num_bins,
                     normed, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vr_args = VR.filter_args(**kwargs)
    vr = VR(iv_file, v_list, preproc, **vr_args)
    x = vr.read()

    t1 = time.time()

    if not os.path.exists(output_path):
        os.makedirs(ouput_path)

    for i in xrange(x.shape[1]):

        fig_file = '%s/D%04d.pdf' % (output_path, i)

        plt.hist(x[:, i], num_bins, normed=normed)
        plt.xlabel('Dim %d' % i)
        plt.grid(True)
        plt.show()
        plt.savefig(fig_file)
        plt.clf()

    logging.info('Elapsed time: %.2f s.' % (time.time() - t1))
Пример #3
0
def train_gauss(iv_file, train_list, preproc_file, 
                save_tlist, append_tlist, input_path, output_path, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vr_args = VR.filter_args(**kwargs)
    vr = VR(iv_file, train_list, preproc, **vr_args)
    x = vr.read()

    t1 = time.time()

    model_args = Gaussianizer.filter_args(**kwargs)
    model = load_model(input_path, **model_args)
    
    model.fit(x)

    if save_tlist:
        if append_tlist and preproc is not None:
            preproc.append(model)
            model = preproc
        else:
            model = TransformList(model)

    model.save(output_path)
Пример #4
0
def eval_plda(iv_file, ndx_file, enroll_file, test_subseg2orig_file,
              preproc_file, coh_iv_file, coh_list, coh_nbest,
              coh_nbest_discard, model_file, score_file, plda_type, **kwargs):

    logging.info('loading data')
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr = TDR(iv_file, ndx_file, enroll_file, None, test_subseg2orig_file,
              preproc)
    x_e, x_t, enroll, ndx, orig_seg = tdr.read()

    logging.info('loading plda model: %s' % (model_file))
    model = F.load_plda(plda_type, model_file)

    t1 = time.time()
    logging.info('computing llr')
    scores = model.llr_1vs1(x_e, x_t)

    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info(
        'scoring elapsed time: %.2f s. elapsed time per trial: %.2f ms.' %
        (dt, dt / num_trials * 1000))

    logging.info('loading cohort data')
    vr = VR(coh_iv_file, coh_list, preproc)
    x_coh = vr.read()

    t2 = time.time()
    logging.info('score cohort vs test')
    scores_coh_test = model.llr_1vs1(x_coh, x_t)
    logging.info('score enroll vs cohort')
    scores_enr_coh = model.llr_1vs1(x_e, x_coh)

    dt = time.time() - t2
    logging.info('cohort-scoring elapsed time: %.2f s.' % (dt))

    t2 = time.time()
    logging.info('apply s-norm')
    snorm = SNorm(nbest=coh_nbest, nbest_discard=coh_nbest_discard)
    scores = snorm.predict(scores, scores_coh_test, scores_enr_coh)
    dt = time.time() - t2
    logging.info('s-norm elapsed time: %.2f s.' % (dt))

    dt = time.time() - t1
    logging.info(
        ('total-scoring elapsed time: %.2f s. '
         'elapsed time per trial: %.2f ms.') % (dt, dt / num_trials * 1000))

    logging.info('combine cluster scores')
    scores = combine_diar_scores(ndx, orig_seg, scores)

    logging.info('saving scores to %s' % (score_file))
    s = TrialScores(enroll, ndx.seg_set, scores)
    s = s.align_with_ndx(ndx)
    s.save_txt(score_file)
Пример #5
0
def train_cw(iv_file, train_list, preproc_file, with_lnorm,
             save_tlist, append_tlist, input_path, output_path, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vr_args = VR.filter_args(**kwargs)
    vr = VR(iv_file, train_list, preproc, **vr_args)
    x = vr.read()

    t1 = time.time()

    model_args = CentWhiten.filter_args(**kwargs)
    model = load_model(input_path, with_lnorm, **model_args)
    
    model.fit(x)

    logging.info('Elapsed time: %.2f s.' % (time.time()-t1))
    
    x = model.predict(x)

    gauss=Normal(x_dim=x.shape[1])
    gauss.fit(x=x)
    logging.debug(gauss.mu[:4])
    logging.debug(gauss.Sigma[:4,:4])

    if save_tlist:
        if append_tlist and preproc is not None:
            preproc.append(model)
            model = preproc
        else:
            model = TransformList(model)

    model.save(output_path)
Пример #6
0
    model.save(output_path)
        
    
    
if __name__ == "__main__":

    parser=argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        fromfile_prefix_chars='@',
        description='Train Centering+Whitening')

    parser.add_argument('--iv-file', dest='iv_file', required=True)
    parser.add_argument('--train-list', dest='train_list', required=True)
    parser.add_argument('--preproc-file', dest='preproc_file', default=None)
    
    VR.add_argparse_args(parser)
    CentWhiten.add_argparse_args(parser)
    
    parser.add_argument('--input-path', dest='input_path', default=None)
    parser.add_argument('--output-path', dest='output_path', required=True)
    parser.add_argument('--no-lnorm', dest='with_lnorm',
                        default=True, action='store_false')

    parser.add_argument('--no-save-tlist', dest='save_tlist',
                        default=True, action='store_false')
    parser.add_argument('--no-append-tlist', dest='append_tlist', 
                        default=True, action='store_false')
    parser.add_argument('-v', '--verbose', dest='verbose', default=1, choices=[0, 1, 2, 3], type=int)
    
    args=parser.parse_args()
    config_logger(args.verbose)