Пример #1
0
def histogram(a, bins=10, range=None, **kwargs):
    """Enhanced histogram

    This is a histogram function that enables the use of more sophisticated
    algorithms for determining bins.  Aside from the `bins` argument allowing
    a string specified how bins are computed, the parameters are the same
    as numpy.histogram().

    Parameters
    ----------
    a : array_like
        array of data to be histogrammed

    bins : int or list or str (optional)
        If bins is a string, then it must be one of:
        'blocks' : use bayesian blocks for dynamic bin widths
        'knuth' : use Knuth's rule to determine bins
        'scotts' : use Scott's rule to determine bins
        'freedman' : use the Freedman-diaconis rule to determine bins

    range : tuple or None (optional)
        the minimum and maximum range for the histogram.  If not specified,
        it will be (x.min(), x.max())

    other keyword arguments are described in numpy.hist().

    Returns
    -------
    hist : array
        The values of the histogram. See `normed` and `weights` for a
        description of the possible semantics.
    bin_edges : array of dtype float
        Return the bin edges ``(length(hist)+1)``.

    See Also
    --------
    numpy.histogram
    astroML.plotting.hist
    """
    a = np.asarray(a)

    # if range is specified, we need to truncate the data for
    # the bin-finding routines
    if (range is not None and (bins in ['blocks', 'knuth',
                                        'scotts', 'freedman'])):
        a = a[(a >= range[0]) & (a <= range[1])]

    if bins == 'blocks':
        bins = bayesian_blocks(a)
    elif bins == 'knuth':
        da, bins = knuth_bin_width(a, True)
    elif bins == 'scotts':
        da, bins = scotts_bin_width(a, True)
    elif bins == 'freedman':
        da, bins = freedman_bin_width(a, True)
    elif isinstance(bins, str):
        raise ValueError("unrecognized bin code: '%s'" % bins)

    return np.histogram(a, bins, range, **kwargs)
Пример #2
0
def histogram(a, bins=10, range=None, **kwargs):
    """Enhanced histogram

    This is a histogram function that enables the use of more sophisticated
    algorithms for determining bins.  Aside from the `bins` argument allowing
    a string specified how bins are computed, the parameters are the same
    as numpy.histogram().

    Parameters
    ----------
    a : array_like
        array of data to be histogrammed

    bins : int or list or str (optional)
        If bins is a string, then it must be one of:
        'blocks' : use bayesian blocks for dynamic bin widths
        'knuth' : use Knuth's rule to determine bins
        'scotts' : use Scott's rule to determine bins
        'freedman' : use the Freedman-diaconis rule to determine bins

    range : tuple or None (optional)
        the minimum and maximum range for the histogram.  If not specified,
        it will be (x.min(), x.max())

    other keyword arguments are described in numpy.hist().

    Returns
    -------
    hist : array
        The values of the histogram. See `normed` and `weights` for a
        description of the possible semantics.
    bin_edges : array of dtype float
        Return the bin edges ``(length(hist)+1)``.

    See Also
    --------
    numpy.histogram
    astroML.plotting.hist
    """
    a = np.asarray(a)

    # if range is specified, we need to truncate the data for
    # the bin-finding routines
    if (range is not None
            and (bins in ['blocks', 'knuth', 'scotts', 'freedman'])):
        a = a[(a >= range[0]) & (a <= range[1])]

    if bins == 'blocks':
        bins = bayesian_blocks(a)
    elif bins == 'knuth':
        da, bins = knuth_bin_width(a, True)
    elif bins == 'scotts':
        da, bins = scotts_bin_width(a, True)
    elif bins == 'freedman':
        da, bins = freedman_bin_width(a, True)
    elif isinstance(bins, basestring):
        raise ValueError("unrecognized bin code: '%s'" % bins)

    return np.histogram(a, bins, range, **kwargs)