Пример #1
0
def test_bo_custom_model():
    domain = Domain({"x": [-2., 2.]})
    bayes_opt = bo.BayesianOptimisation(domain=domain, seed=7)
    kernel = GPy.kern.RBF(1) + GPy.kern.Bias(1)
    n_steps = 3
    batch_size = 3
    all_samples = []
    all_evaluations = []
    first_samples = bayes_opt.run_step(batch_size=batch_size, minimise=False)
    xs = np.atleast_2d([s["x"] for s in first_samples])
    ys = np.atleast_2d(
        test_utils.continuous_heteroscedastic_1d(
            np.array([s["x"] for s in first_samples])))
    for i in range(n_steps):
        custom_model = GPy.models.GPHeteroscedasticRegression(xs, ys, kernel)
        samples = bayes_opt.run_step(batch_size,
                                     minimise=False,
                                     model=custom_model)
        evaluations = test_utils.continuous_heteroscedastic_1d(
            np.array([s["x"] for s in samples]))
        bayes_opt.update(samples,
                         [base.EvaluationScore(ev) for ev in evaluations])
        xs = np.concatenate([xs, np.atleast_2d([s["x"] for s in samples])],
                            axis=0)
        ys = np.concatenate([ys, np.atleast_2d(evaluations)], axis=0)
        # gather the samples and evaluations for later assessment
        all_samples.extend([s["x"] for s in samples])
        all_evaluations.extend(evaluations)
    best_eval_index = int(np.argmax(all_evaluations))
    best_sample = all_samples[best_eval_index]
    assert np.isclose(best_sample,
                      test_utils.CONT_HETEROSCED_1D_ARGMAX,
                      atol=1e-1)
Пример #2
0
def test_bo_set_history():
    n_samples = 10
    domain = Domain({"a": {"b": [2, 3]}, "c": [0, 0.1]})
    history = [
        base.HistoryPoint(domain.sample(),
                          {"score": base.EvaluationScore(float(i))})
        for i in range(n_samples)
    ]
    bayes_opt = bo.BayesianOptimisation(domain, seed=7)
    bayes_opt.history = history
    assert bayes_opt.history == history
    assert len(bayes_opt._data_x) == len(bayes_opt._data_fx) == len(history)
Пример #3
0
def test_bo_update_and_reset():
    domain = Domain({"a": {"b": [2, 3], "d": {"f": [3, 4]}}, "c": [0, 0.1]})
    bayes_opt = bo.BayesianOptimisation(domain, seed=7)
    samples = []
    n_reps = 3
    for i in range(n_reps):
        samples.extend(bayes_opt.run_step(batch_size=1, minimise=False))
        bayes_opt.update(samples[-1], base.EvaluationScore(2. * i))
    assert len(bayes_opt._data_x) == n_reps
    assert len(bayes_opt._data_fx) == n_reps
    assert np.all(bayes_opt._data_x == np.array(
        [bayes_opt._convert_to_gpyopt_sample(s) for s in samples]))
    assert np.all(bayes_opt._data_fx == 2. *
                  np.arange(n_reps).reshape(n_reps, 1))
    bayes_opt.reset()
    assert len(bayes_opt.history) == 0
Пример #4
0
def square(sample: Sample) -> base.EvaluationScore:
    return base.EvaluationScore(sample["x"]**2)