Пример #1
0
def test_can_reduce_poison_from_any_subtree(size, seed):
    """This test validates that we can minimize to any leaf node of a binary
    tree, regardless of where in the tree the leaf is."""
    random = Random(seed)

    # Initially we create the minimal tree of size n, regardless of whether it
    # is poisoned (which it won't be - the poison event essentially never
    # happens when drawing uniformly at random).

    # Choose p so that the expected size of the tree is equal to the desired
    # size.
    p = 1.0 / (2.0 - 1.0 / size)
    strat = PoisonedTree(p)

    def test_function(data):
        v = data.draw(strat)
        if len(v) >= size:
            data.mark_interesting()

    runner = ConjectureRunner(test_function, random=random, settings=TEST_SETTINGS)

    runner.generate_new_examples()
    runner.shrink_interesting_examples()

    (data,) = runner.interesting_examples.values()

    assert len(ConjectureData.for_buffer(data.buffer).draw(strat)) == size

    starts = [b.start for b in data.blocks if b.length == 2]
    assert len(starts) % 2 == 0

    for i in range(0, len(starts), 2):
        # Now for each leaf position in the tree we try inserting a poison
        # value artificially. Additionally, we add a marker to the end that
        # must be preserved. The marker means that we are not allow to rely on
        # discarding the end of the buffer to get the desired shrink.
        u = starts[i]
        marker = bytes([1, 2, 3, 4])

        def test_function_with_poison(data):
            v = data.draw(strat)
            m = data.draw_bytes(len(marker))
            if POISON in v and m == marker:
                data.mark_interesting()

        runner = ConjectureRunner(
            test_function_with_poison, random=random, settings=TEST_SETTINGS
        )

        runner.cached_test_function(
            data.buffer[:u] + bytes([255]) * 4 + data.buffer[u + 4 :] + marker
        )

        assert runner.interesting_examples
        runner.shrink_interesting_examples()

        (shrunk,) = runner.interesting_examples.values()

        assert ConjectureData.for_buffer(shrunk.buffer).draw(strat) == (POISON,)
Пример #2
0
    def generate_new_examples(self):
        def draw_bytes(data, n):
            return uniform(self.random, n)

        while not self.interesting_examples:
            self.test_function(
                ConjectureData(draw_bytes=draw_bytes,
                               max_length=self.settings.buffer_size))
Пример #3
0
def test_minimal_poisoned_containers(seed, size, p, strategy_class, monkeypatch):
    elements = Poisoned(p)
    strategy = strategy_class(elements, size)

    def test_function(data):
        v = data.draw(strategy)
        data.output = repr(v)
        if POISON in v:
            data.mark_interesting()

    runner = TrialRunner(test_function, random=Random(seed), settings=TRIAL_SETTINGS)
    runner.run()
    (v,) = runner.interesting_examples.values()
    result = ConjectureData.for_buffer(v.buffer).draw(strategy)
    assert len(result) == 1
def test_minimal_poisoned_containers(seed, size, p, strategy_class, monkeypatch):
    elements = Poisoned(p)
    strategy = strategy_class(elements, size)

    def test_function(data):
        v = data.draw(strategy)
        data.output = repr(v)
        if POISON in v:
            data.mark_interesting()

    runner = TrialRunner(test_function, random=Random(seed), settings=TRIAL_SETTINGS)
    runner.run()
    v, = runner.interesting_examples.values()
    result = ConjectureData.for_buffer(v.buffer).draw(strategy)
    assert len(result) == 1
Пример #5
0
def test_minimal_poisoned_containers(seed, size, p, strategy_class,
                                     monkeypatch):
    # Disable emergency measures for these tests, as they're ones that we
    # should be able to perform without them.
    monkeypatch.setattr(Shrinker, 'emergency_measures', lambda self: None)

    elements = Poisoned(p)
    strategy = strategy_class(elements, size)

    def test_function(data):
        v = data.draw(strategy)
        data.output = repr(v)
        if POISON in v:
            data.mark_interesting()

    runner = TrialRunner(test_function,
                         random=Random(seed),
                         settings=TRIAL_SETTINGS)
    runner.run()
    v, = runner.interesting_examples.values()
    result = ConjectureData.for_buffer(v.buffer).draw(strategy)
    assert len(result) == 1
def test_can_reduce_poison_from_any_subtree(size, seed):
    """This test validates that we can minimize to any leaf node of a binary
    tree, regardless of where in the tree the leaf is."""
    random = Random(seed)

    # Initially we create the minimal tree of size n, regardless of whether it
    # is poisoned (which it won't be - the poison event essentially never
    # happens when drawing uniformly at random).

    # Choose p so that the expected size of the tree is equal to the desired
    # size.
    p = 1.0 / (2.0 - 1.0 / size)
    strat = PoisonedTree(p)

    def test_function(data):
        v = data.draw(strat)
        if len(v) >= size:
            data.mark_interesting()

    runner = ConjectureRunner(
        test_function, random=random, settings=settings(TEST_SETTINGS, buffer_size=LOTS)
    )

    while not runner.interesting_examples:
        runner.test_function(
            runner.new_conjecture_data(lambda data, n: uniform(random, n))
        )

    runner.shrink_interesting_examples()

    data, = runner.interesting_examples.values()

    assert len(ConjectureData.for_buffer(data.buffer).draw(strat)) == size

    starts = [b.start for b in data.blocks if b.length == 2]
    assert len(starts) % 2 == 0

    for i in hrange(0, len(starts), 2):
        # Now for each leaf position in the tree we try inserting a poison
        # value artificially. Additionally, we add a marker to the end that
        # must be preserved. The marker means that we are not allow to rely on
        # discarding the end of the buffer to get the desired shrink.
        u = starts[i]
        marker = hbytes([1, 2, 3, 4])

        def test_function_with_poison(data):
            v = data.draw(strat)
            m = data.draw_bytes(len(marker))
            if POISON in v and m == marker:
                data.mark_interesting()

        runner = ConjectureRunner(
            test_function_with_poison, random=random, settings=TEST_SETTINGS
        )

        runner.cached_test_function(
            data.buffer[:u] + hbytes([255]) * 4 + data.buffer[u + 4 :] + marker
        )

        assert runner.interesting_examples
        runner.shrink_interesting_examples()

        shrunk, = runner.interesting_examples.values()

        assert ConjectureData.for_buffer(shrunk.buffer).draw(strat) == (POISON,)