Пример #1
0
def get_triangle_centers_from_urdf(urdfilename, linkName, skinFrameName, trianglesNumbersList):
    iDynTree.init_numpy_helpers();
    mdlLoader= iDynTree.ModelLoader();
    mdlLoader.loadModelFromFile(urdfilename);
    kinDyn = iDynTree.KinDynComputations();
    kinDyn.loadRobotModel(mdlLoader.model());

    # The results is returned by this function already in the frame used by the skin
    centersAndNormals = {};
    centersAndNormals['centers'] = {};
    centersAndNormals['normals'] = {};

    for triangleNumber in trianglesNumbersList:
        # Get center in link frame
        triangleFrameName = linkName+"_skin_"+str(triangleNumber);
        skinFrame_H_triangleFrameName = kinDyn.getRelativeTransform(skinFrameName,triangleFrameName);
        triangleCenter_wrt_skinFrame = skinFrame_H_triangleFrameName.getPosition();
        skinFrame_R_triangleFrame = skinFrame_H_triangleFrameName.getRotation().toNumPy();
        centersAndNormals['centers'][triangleNumber] = triangleCenter_wrt_skinFrame.toNumPy();
        centersAndNormals['normals'][triangleNumber] = skinFrame_R_triangleFrame[:, 2];

    return centersAndNormals;
Пример #2
0
'''
 For testing iDynTree python bindings, we rely on the unittest standard python lib
'''

import os
# This test is mean to be executed from the build,
# so we add in PYTHONPATH the location of iDynTree.py and _iDynTree.so
os.environ["PYTHONPATH"] = os.environ["PYTHONPATH"] + ":../:../../../lib/python/"

import unittest
import iDynTree; iDynTree.init_helpers(); iDynTree.init_numpy_helpers()
import numpy as np
import random

class DynCompTest(unittest.TestCase):
    '''Helper methods'''
    def checkApproxEqual(self,val1,val2,msg):
        self.assertAlmostEqual(val1,val2,self.places(),msg)

    def checkSpatialVectorEqual(self,p1,p2,msg):
        msgMore = "val1 = " + p1.toString() + " and val2 = " + p2.toString()
        for i in range(0,3):
            self.checkApproxEqual(p1.getVal(i),p2.getVal(i),msg+":"+msgMore)

    def checkVectorEqual(self,v1,v2,msg):
        msgMore = "val1 = " + v1.toString() + " and val2 = " + v2.toString()
        for i in range(0,v1.size()):
            self.checkApproxEqual(v1.getVal(i), v2.getVal(i), msg+":"+msgMore)

    '''tests'''
    def testDynComp(self):
Пример #3
0
#!/usr/bin/env python

from builtins import range
import numpy as np
import iDynTree; iDynTree.init_helpers(); iDynTree.init_numpy_helpers()
import identificationHelpers
import argparse

def main():
    '''
    open a urdf file and add noise to each parameter. Can be used for testing, but noisy params are usually not consistent, so may be of limited use.
    '''
    parser = argparse.ArgumentParser(description='Load measurements and URDF model to get inertial parameters.')
    parser.add_argument('--urdf_input', required=True, type=str, help='the file to load the robot model from')
    parser.add_argument('--urdf_output', required=True, type=str, help='the file to save the noisy robot model to')
    parser.add_argument('--noise', required=False, type=float, help='scale of noise (default 0.01)')
    parser.set_defaults(noise=0.01)
    args = parser.parse_args()

    model = iDynTree.Model()
    iDynTree.modelFromURDF(args.urdf_input, model)
    link_names = []
    for i in range(0, model.getNrOfLinks()):
        link_names.append(model.getLinkName(i))
    n_params = model.getNrOfLinks()*10

    dynComp = iDynTree.DynamicsComputations()
    dynComp.loadRobotModelFromFile(args.urdf_input)
    xStdModel = iDynTree.VectorDynSize(n_params)
    dynComp.getModelDynamicsParameters(xStdModel)
    xStdModel = xStdModel.toNumPy()
Пример #4
0
#!/usr/bin/env python
#-*- coding: utf-8 -*-

from __future__ import division
from __future__ import print_function
from builtins import range
import sys
from typing import Dict

import numpy as np
from colorama import Fore, Back, Style
import iDynTree
iDynTree.init_helpers()
iDynTree.init_numpy_helpers()

import argparse
parser = argparse.ArgumentParser(
    description=
    'Send an excitation trajectory and record measurements to <filename>.')
parser.add_argument('--model',
                    required=True,
                    type=str,
                    help='the file to load the robot model from')
parser.add_argument('--filename',
                    type=str,
                    help='the filename to save the measurements to')
parser.add_argument('--trajectory',
                    type=str,
                    help='the file to load the trajectory from')
parser.add_argument('--config',
                    required=True,