Пример #1
0
def psy_by_mouse(unique_signed_contrasts):

    mice = pd.DataFrame.from_dict(
        (subject.Subject()) * (subject.SubjectLab()) *
        (behavior_analysis.SessionTrainingStatus()
         & 'training_status="trained"  '))

    psy_df = pd.DataFrame(columns=unique_signed_contrasts)

    for row, mouse in enumerate(mice.subject_nickname.unique()):

        key = ((subject.Subject() & 'subject_nickname = "{}"'.format(mouse)) *
               (behavior.TrialSet() & 'n_trials > 100') *
               (subject.SubjectLab()) *
               (behavior_analysis.SessionTrainingStatus()
                & 'training_status="trained"  ')).fetch('KEY')

        choice, cont_left, cont_right = (behavior.TrialSet.Trial & key).fetch(
            'trial_response_choice', 'trial_stim_contrast_left',
            'trial_stim_contrast_right')
        signed_contrasts = cont_right - cont_left
        right_choices = choice == 'CCW'

        total_trials = []
        right_trials = []

        for cont in unique_signed_contrasts:
            matching = (signed_contrasts == cont)
            total_trials.append(np.sum(matching))
            right_trials.append(np.sum(right_choices[matching]))

        prop_right_trials = np.divide(right_trials, total_trials)
        psy_df.loc[row, :] = prop_right_trials

    return psy_df
Пример #2
0
    def _insert_virtual_tables(self):
        # insert virtual modules tables in order
        virtuals = Graph(behavior.TrialSet()).get_table_list(virtual_only=True) + \
            Graph(ephys.DefaultCluster()).get_table_list(virtual_only=True) + \
            Graph(behavior_analyses.BehavioralSummaryByDate()).get_table_list(virtual_only=True)

        for itable, vtable in enumerate(virtuals[::-1]):
            table_key = dict(full_table_name=vtable['full_table_name'])

            if Table & table_key:
                dj.Table._update(self & table_key, 'table_order', itable)
            else:
                self.insert1(dict(full_table_name=vtable['full_table_name'],
                                  table_class=vtable['table'],
                                  table_order_category='virtual',
                                  table_order=itable,
                                  table_label='virtual'),
                             skip_duplicates=True)
#requires Alex glm module

import matplotlib.pyplot as plt
import pandas as pd
## CONNECT TO datajoint
import datajoint as dj
dj.config['database.host'] = 'datajoint.internationalbrainlab.org'
from ibl_pipeline.analyses import behavior as behavior_analysis
from ibl_pipeline import reference, subject, behavior
from alexfigs_datajoint_functions import *  # this has all plotting functions
import seaborn as sns
from glm import *

key = ((subject.Subject() & 'sex!="U"') *
       (behavior.TrialSet() & 'n_trials > 100') * (subject.SubjectLab()) *
       (behavior_analysis.SessionTrainingStatus()
        & 'training_status="ready for ephys"  ')).fetch('KEY')
trials_ibl = pd.DataFrame.from_dict(
    (subject.Subject() * behavior.TrialSet.Trial & key).fetch(as_dict=True))

trials_ibl['signed_contrasts'] = trials_ibl[
    'trial_stim_contrast_right'] - trials_ibl['trial_stim_contrast_left']

##Rename for GLM function
trials_ibl = trials_ibl.rename(index=str,
                               columns={
                                   "session_start_time": "ses",
                                   "subject_uuid": "mouse_name",
                                   "trial_feedback_type": "feedbackType",
                                   "trial_response_choice": "choice"
                               })
Пример #4
0
from define_paths import fig_path
from behavior_plots import *
from load_mouse_data_datajoint import *  # this has all plotting functions
import psychofit as psy  # https://github.com/cortex-lab/psychofit

# folder to save plots, from DataJoint
path = '/Snapshot_DataJoint_shortcut/'

# ============================================= #
# START BIG OVERVIEW PLOT
# ============================================= #

subjects = pd.DataFrame.from_dict(
    ((subject.Subject() - subject.Death() & 'sex!="U"')
     & action.Weighing() & action.WaterAdministration()
     & behavior.TrialSet()).fetch(as_dict=True,
                                  order_by=['lab_name', 'subject_nickname']))
users = subjects['lab_name'].unique()
print(users)

for lidx, lab in enumerate(users):

    subjects = pd.DataFrame.from_dict(
        ((subject.Subject() - subject.Death() & 'subject_nickname="IBL_47"'
          & 'sex!="U"' & 'lab_name="%s"' % lab)
         & action.Weighing() & action.WaterAdministration()
         & behavior.TrialSet()).fetch(as_dict=True,
                                      order_by=['subject_nickname']))
    # group by batches: mice that were born on the same day
    batches = subjects.subject_birth_date.unique()
Пример #5
0
from ibl_pipeline import reference, subject, action, acquisition, data, behavior

# loading and plotting functions
from behavior_plots import *
from load_mouse_data_datajoint import * # this has all plotting functions
import psychofit as psy # https://github.com/cortex-lab/psychofit

# folder to save plots, from DataJoint
path = '/Figures_DataJoint_shortcuts/'

# ============================================= #
# START BIG OVERVIEW PLOT
# ============================================= #

allsubjects = pd.DataFrame.from_dict(((subject.Subject() - subject.Death()) & 'sex!="U"'
                                   & action.Weighing() & action.WaterAdministration() & behavior.TrialSet()
                                   ).fetch(as_dict=True, order_by=['lab_name', 'subject_nickname']))
users = allsubjects['lab_name'].unique()
print(users)

# from guido: make sure max 5 mice are plotted on a single figure
sub_batch_size = 5


for lidx, lab in enumerate(users):

	# take mice from this lab only
	subjects = pd.DataFrame.from_dict(((subject.Subject() - subject.Death() & 'sex!="U"' & 'lab_name="%s"'%lab)
                                   & action.Weighing() & action.WaterAdministration() & behavior.TrialSet()
                                   ).fetch(as_dict=True, order_by=['subject_nickname']))