Пример #1
0
 def testSpatialPooler(self):
     """ We only test the size of the pooler. The correctness of the values
     are tested in fastop
     """
     grids = [(2, 2), (3, 3), (2, 3), (4, 4), (2, 4), (5, 5)]
     methods = ['max','ave','rms']
     for grid in grids:
         for method in methods:
             pooler = pipeline.SpatialPooler(
                     {'method': method, 'grid': grid})
             for data in self.test_data:
                 output = pooler.process(data)
                 self.assertEqual(output.shape, grid + (data.shape[-1],))
Пример #2
0
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer(
            {'reg': 0.1})),  # Does whitening
        pipeline.ThresholdEncoder({
            'alpha': 0.0,
            'twoside': False
        },
                                  trainer=pipeline.NormalizedKmeansTrainer({
                                      'k':
                                      1600,
                                      'max_iter':
                                      100
                                  })),  # does encoding
        pipeline.SpatialPooler({
            'grid': (2, 2),
            'method': 'ave'
        })
    ])

    logging.info('Training the pipeline...')
    conv.train(cifar, 400000, exhaustive=True)
    mpi.root_pickle(conv, 'cifar_conv.pickle')

# do pruning
try:
    selected_idx = pickle.load(open('cifar_selected_idx.pickle'))
    logging.info('Skipping first layer pruning')
except Exception, e:
    features = conv.sample(cifar, 200000, True)
    mpi.dump_matrix_multi(
        features, '/u/vis/ttmp/jiayq/cifar/cifar_feature_pooled_sample')
Пример #3
0
def cifar_demo():
    """Performs a demo classification on cifar
    """

    mpi.mkdir(FLAGS.output_dir)
    logging.info('Loading cifar data...')
    cifar = visiondata.CifarDataset(FLAGS.root, is_training=True)
    cifar_test = visiondata.CifarDataset(FLAGS.root, is_training=False)

    if FLAGS.trainer == "pink":
        trainer = pinker.SpatialPinkTrainer({
            'size': (FLAGS.patch, FLAGS.patch),
            'reg': 0.1
        })
    else:
        trainer = pipeline.ZcaTrainer({'reg': 0.1})

    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([FLAGS.patch, FLAGS.patch],
                                1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=trainer),
        pipeline.ThresholdEncoder({
            'alpha': 0.0,
            'twoside': False
        },
                                  trainer=pipeline.OMPTrainer({
                                      'k': FLAGS.fromdim,
                                      'max_iter': 100
                                  })),
        pipeline.SpatialPooler({
            'grid': (FLAGS.grid, FLAGS.grid),
            'method': FLAGS.method
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(cifar, 400000, exhaustive=True)

    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(cifar, as_2d=False)
    Ytrain = cifar.labels().astype(np.int)
    Xtest = conv.process_dataset(cifar_test, as_2d=False)
    Ytest = cifar_test.labels().astype(np.int)

    # before we do feature computation, try to do dimensionality reduction
    Xtrain.resize(np.prod(Xtrain.shape[:-1]), Xtrain.shape[-1])
    Xtest.resize(np.prod(Xtest.shape[:-1]), Xtest.shape[-1])

    m, std = classifier.feature_meanstd(Xtrain, 0.01)
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    covmat = mathutil.mpi_cov(Xtrain)
    if False:
        # directly do dimensionality reduction
        eigval, eigvec = np.linalg.eigh(covmat)
        U = eigvec[:, -FLAGS.todim:]
        Xtrain = np.dot(Xtrain, U)
        Xtest = np.dot(Xtest, U)
    else:
        # do subsampling
        import code_ap
        temp = code_ap.code_af(Xtrain, FLAGS.todim)
        sel = temp[0]
        sel = mpi.COMM.bcast(sel)
        Cpred = covmat[sel]
        Csel = Cpred[:, sel]
        W = np.linalg.solve(Csel, Cpred)
        # perform svd
        U, D, _ = np.linalg.svd(W, full_matrices=0)
        U *= D
        Xtrain = np.dot(Xtrain[:, sel], U)
        Xtest = np.dot(Xtest[:, sel], U)
    Xtrain.resize(Ytrain.shape[0], Xtrain.size / Ytrain.shape[0])
    Xtest.resize(Ytest.shape[0], Xtest.size / Ytest.shape[0])
    """
    # This part is used to do post-pooling over all features nystrom subsampling
    # normalization
    Xtrain.resize(Xtrain.shape[0], np.prod(Xtrain.shape[1:]))
    Xtest.resize(Xtest.shape[0], np.prod(Xtest.shape[1:]))
    m, std = classifier.feature_meanstd(Xtrain, reg = 0.01)
    # to match Adam Coates' pipeline
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std
    
    covmat = mathutil.mpi_cov(Xtrain)
    eigval, eigvec = np.linalg.eigh(covmat)
    U = eigvec[:, -(200*FLAGS.grid*FLAGS.grid):]
    #U = eigvec[:,-400:] * np.sqrt(eigval[-400:])
    Xtrain = np.dot(Xtrain, U)
    Xtest = np.dot(Xtest, U)
    """

    w, b = classifier.l2svm_onevsall(Xtrain,
                                     Ytrain,
                                     0.002,
                                     fminargs={
                                         'disp': 0,
                                         'maxfun': 1000
                                     })
    accu_train = classifier.Evaluator.accuracy(Ytrain, np.dot(Xtrain, w) + b)
    accu_test = classifier.Evaluator.accuracy(Ytest, np.dot(Xtest, w) + b)
    logging.info('Training accuracy: %f' % accu_train)
    logging.info('Testing accuracy: %f' % accu_test)
Пример #4
0
conv = pipeline.ConvLayer([
    pipeline.PatchExtractor([6, 6], 1),  # extracts patches
    pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
    pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer({'reg': 0.1})),
    pipeline.ThresholdEncoder({
        'alpha': 0.25,
        'twoside': False
    },
                              trainer=pipeline.NormalizedKmeansTrainer({
                                  'k':
                                  FLAGS.fromdim,
                                  'max_iter':
                                  100
                              })),
    pipeline.SpatialPooler({
        'grid': (FLAGS.grid, FLAGS.grid),
        'method': FLAGS.method
    })  # average pool
])
logging.info("Total images: %d " % train_data.size_total())
print "local images: ", train_data.size()

logging.info('Training the pipeline...')
conv.train(train_data, 400000, exhaustive=True)

if MIRRORED:
    train_data = datasets.MirrorSet(train_data)
logging.info('Extracting features...')
Xtrain = conv.process_dataset(train_data, as_2d=False)
Ytrain = train_data.labels().astype(np.int)
Xtest = conv.process_dataset(test_data, as_2d=False)
Ytest = test_data.labels().astype(np.int)
def bird_demo():
    logging.info('Loading data...')
    bird = visiondata.CUBDataset(FLAGS.root,
                                 is_training=True,
                                 crop=FLAGS.crop,
                                 version=FLAGS.version,
                                 prefetch=True,
                                 target_size=TARGET_SIZE)
    bird_test = visiondata.CUBDataset(FLAGS.root,
                                      is_training=False,
                                      crop=FLAGS.crop,
                                      version=FLAGS.version,
                                      prefetch=True,
                                      target_size=TARGET_SIZE)
    if FLAGS.mirrored:
        bird = datasets.MirrorSet(bird)
    conv = pipeline.ConvLayer(
        [
            pipeline.PatchExtractor([FLAGS.patch, FLAGS.patch],
                                    1),  # extracts patches
            pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
            pipeline.LinearEncoder({},
                                   trainer=pipeline.ZcaTrainer({'reg': 0.1})),
            pipeline.ThresholdEncoder({
                'alpha': 0.25,
                'twoside': True
            },
                                      trainer=pipeline.OMPTrainer(
                                          {
                                              'k': FLAGS.k,
                                              'max_iter': 100
                                          })),
            pipeline.SpatialPooler({
                'grid': 4,
                'method': 'max'
            })
        ],
        fixed_size=True)
    logging.info('Training the pipeline...')
    conv.train(bird, 400000, exhaustive=True)

    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(bird, as_2d=True)
    Ytrain = bird.labels().astype(np.int)
    Xtest = conv.process_dataset(bird_test, as_2d=True)
    Ytest = bird_test.labels().astype(np.int)

    # normalization
    m, std = classifier.feature_meanstd(Xtrain, reg=0.01)
    # to match Adam Coates' pipeline
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    w, b = classifier.l2svm_onevsall(Xtrain,
                                     Ytrain,
                                     0.005,
                                     fminargs={'maxfun': 1000})
    accu_train = classifier.Evaluator.accuracy(Ytrain, np.dot(Xtrain, w) + b)
    accu_test = classifier.Evaluator.accuracy(Ytest, np.dot(Xtest, w) + b)
    logging.info('Training accuracy: %f' % accu_train)
    logging.info('Testing accuracy: %f' % accu_test)
    mpi.root_pickle((m, std, w, b, conv[-2].dictionary),
                    'debug_features.pickle')
Пример #6
0
def cifar_demo():
    """Performs a demo classification on cifar
    """
    mpi.mkdir(FLAGS.output_dir)
    logging.info('Loading cifar data...')
    cifar = visiondata.CifarDataset(FLAGS.root, is_training=True)
    cifar_test = visiondata.CifarDataset(FLAGS.root, is_training=False)
    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer(
            {'reg': 0.1})),  # Does whitening
        pipeline.ThresholdEncoder({
            'alpha': 0.25,
            'twoside': True
        },
                                  trainer=pipeline.OMPTrainer({
                                      'k': 800,
                                      'max_iter': 100
                                  })),  # does encoding
        pipeline.SpatialPooler({
            'grid': (2, 2),
            'method': 'ave'
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(cifar, 50000)
    logging.info('Dumping the pipeline...')
    if mpi.is_root():
        with open(os.path.join(FLAGS.output_dir, FLAGS.model_file),
                  'w') as fid:
            pickle.dump(conv, fid)
            fid.close()
    with open(os.path.join(FLAGS.output_dir, FLAGS.model_file), 'r') as fid:
        conv = pickle.load(fid)
    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(cifar, as_2d=True)
    mpi.dump_matrix_multi(
        Xtrain, os.path.join(FLAGS.output_dir, FLAGS.feature_file + '_train'))
    Ytrain = cifar.labels().astype(np.int)
    Xtest = conv.process_dataset(cifar_test, as_2d=True)
    mpi.dump_matrix_multi(
        Xtest, os.path.join(FLAGS.output_dir, FLAGS.feature_file + '_test'))
    Ytest = cifar_test.labels().astype(np.int)

    # normalization
    m, std = classifier.feature_meanstd(Xtrain)
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    w, b = classifier.l2svm_onevsall(Xtrain, Ytrain, 0.01)
    if mpi.is_root():
        with open(os.path.join(FLAGS.output_dir, FLAGS.svm_file), 'w') as fid:
            pickle.dump({'m': m, 'std': std, 'w': w, 'b': b}, fid)
    accu = np.sum(Ytrain == (np.dot(Xtrain,w)+b).argmax(axis=1)) \
            / float(len(Ytrain))
    accu_test = np.sum(Ytest == (np.dot(Xtest,w)+b).argmax(axis=1)) \
            / float(len(Ytest))

    logging.info('Training accuracy: %f' % accu)
    logging.info('Testing accuracy: %f' % accu_test)
Пример #7
0
def stl_demo():
    """Performs a demo classification on stl
    """
    logging.info('Loading stl data...')
    stl = visiondata.STL10Dataset(FLAGS.root, 'unlabeled', target_size=32)
    stl_train = visiondata.STL10Dataset(FLAGS.root, 'train', target_size=32)
    stl_test = visiondata.STL10Dataset(FLAGS.root, 'test', target_size=32)

    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer({'reg': 0.1})),
        pipeline.ThresholdEncoder({
            'alpha': 0.25,
            'twoside': False
        },
                                  trainer=pipeline.NormalizedKmeansTrainer({
                                      'k':
                                      FLAGS.fromdim,
                                      'max_iter':
                                      100
                                  })),
        pipeline.SpatialPooler({
            'grid': (FLAGS.grid, FLAGS.grid),
            'method': FLAGS.method
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(stl, 400000, exhaustive=True)

    logging.info('Extracting features...')
    X = conv.process_dataset(stl, as_2d=False)
    Xtrain = conv.process_dataset(stl_train, as_2d=False)
    Ytrain = stl_train.labels().astype(np.int)
    Xtest = conv.process_dataset(stl_test, as_2d=False)
    Ytest = stl_test.labels().astype(np.int)

    # before we do feature computation, try to do dimensionality reduction
    X.resize(np.prod(X.shape[:-1]), X.shape[-1])
    Xtrain.resize(np.prod(Xtrain.shape[:-1]), Xtrain.shape[-1])
    Xtest.resize(np.prod(Xtest.shape[:-1]), Xtest.shape[-1])

    m, std = classifier.feature_meanstd(X, 0.01)
    X -= m
    X /= std
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    covmat = mathutil.mpi_cov(X)

    current_dim = FLAGS.fromdim
    if FLAGS.svd == 1:
        eigval, eigvec = np.linalg.eigh(covmat)
    while current_dim >= 100:
        if current_dim < FLAGS.fromdim:
            if FLAGS.svd == 1:
                # directly do dimensionality reduction
                U = eigvec[:, -current_dim:]
                Xtrain_red = np.dot(Xtrain, U)
                Xtest_red = np.dot(Xtest, U)
            else:
                # do subsampling
                temp = code_ap.code_af(X, current_dim, tol=current_dim * 0.01)
                logging.info("selected %d dims" % len(temp[0]))
                sel = temp[0]
                sel = mpi.COMM.bcast(sel)
                Cpred = covmat[sel]
                Csel = Cpred[:, sel]
                W = np.linalg.solve(Csel, Cpred)
                # perform svd
                U, D, _ = np.linalg.svd(W, full_matrices=0)
                U *= D
                Xtrain_red = np.dot(Xtrain[:, sel], U)
                Xtest_red = np.dot(Xtest[:, sel], U)
            Xtrain_red.resize(Ytrain.shape[0],
                              Xtrain_red.size / Ytrain.shape[0])
            Xtest_red.resize(Ytest.shape[0], Xtest_red.size / Ytest.shape[0])
        else:
            Xtrain_red = Xtrain.copy()
            Xtest_red = Xtest.copy()
            Xtrain_red.resize(Ytrain.shape[0],
                              Xtrain_red.size / Ytrain.shape[0])
            Xtest_red.resize(Ytest.shape[0], Xtest_red.size / Ytest.shape[0])

        w, b = classifier.l2svm_onevsall(Xtrain_red,
                                         Ytrain,
                                         0.005,
                                         fminargs={
                                             'disp': 0,
                                             'maxfun': 1000
                                         })
        accu_train = classifier.Evaluator.accuracy(Ytrain,
                                                   np.dot(Xtrain_red, w) + b)
        accu_test = classifier.Evaluator.accuracy(Ytest,
                                                  np.dot(Xtest_red, w) + b)
        logging.info('%d - %d, Training accuracy: %f' %
                     (FLAGS.fromdim, current_dim, accu_train))
        logging.info('%d - %d, Testing accuracy: %f' %
                     (FLAGS.fromdim, current_dim, accu_test))
        current_dim /= 2
Пример #8
0
code_sizes = [50,100,200,400,800,1600]
pool_sizes = [1,2,3,4]

accuracy_record = np.zeros((len(code_sizes), len(pool_sizes)))

for cid, code_size in enumerate(code_sizes):
    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6,6], 1), # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}), # normalizes the patches
        pipeline.LinearEncoder({},
                trainer = pipeline.ZcaTrainer({'reg': 0.1})), # Does whitening
        pipeline.ThresholdEncoder({'alpha': 0.0, 'twoside': False},
                trainer = pipeline.NormalizedKmeansTrainer(
                        {'k': code_size, 'max_iter':100})), # does encoding
        pipeline.SpatialPooler({'grid': (2,2), 'method': 'rms'})
    ])
    
    logging.debug('Training the pipeline...')
    conv.train(cifar, 400000, exhaustive=True)
    
    for pid, pool_size in enumerate(pool_sizes):
        conv[-1] = pipeline.SpatialPooler({'grid': (pool_size, pool_size),
                                           'method': 'rms'})
        logging.debug('Extracting features...')
        Xtrain = conv.process_dataset(cifar, as_2d = True)
        Ytrain = cifar.labels().astype(np.int)
        Xtest = conv.process_dataset(cifar_test, as_2d = True)
        Ytest = cifar_test.labels().astype(np.int)
        
        # normalization
Пример #9
0
    mpi.barrier()

if os.path.exists(model_file_second):
    logging.info('skipping the second layer model file computation')
    conv2 = pickle.load(open(model_file_second, 'r'))
else:
    logging.info("Setting up the second layer convolutional layer...")
    conv[3].dictionary = np.ascontiguousarray(
        conv[3].dictionary[order[:NUM_REDUCED_DICT]])
    conv2 = pipeline.ConvLayer([
        pipeline.PatchExtractor([4, 4], 1),
        pipeline.MeanvarNormalizer({'reg': 0.1}),
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer({'reg': 0.01})),
        pipeline.ThresholdEncoder({
            'alpha': 0.0,
            'twoside': False
        },
                                  trainer=pipeline.OMPTrainer({'k': 1600})),
        pipeline.SpatialPooler({
            'grid': (4, 4),
            'method': 'max'
        })
    ],
                               prev=conv)
    conv2.train(stl, 400000)
    if mpi.is_root():
        fid = open(model_file_second, 'w')
        pickle.dump(conv2, fid)
        fid.close()
    mpi.barrier()
def cifar_demo():
    """Performs a demo classification on cifar
    """

    mpi.mkdir(FLAGS.output_dir)
    logging.info('Loading cifar data...')
    cifar = visiondata.CifarDataset(FLAGS.root, is_training=True)
    cifar_test = visiondata.CifarDataset(FLAGS.root, is_training=False)

    conv = pipeline.ConvLayer([
        pipeline.PatchExtractor([6, 6], 1),  # extracts patches
        pipeline.MeanvarNormalizer({'reg': 10}),  # normalizes the patches
        pipeline.LinearEncoder({}, trainer=pipeline.ZcaTrainer({'reg': 0.1})),
        pipeline.ThresholdEncoder({
            'alpha': 0.25,
            'twoside': False
        },
                                  trainer=pipeline.NormalizedKmeansTrainer({
                                      'k':
                                      FLAGS.fromdim,
                                      'max_iter':
                                      100
                                  })),
        pipeline.SpatialPooler({
            'grid': (FLAGS.grid, FLAGS.grid),
            'method': FLAGS.method
        })  # average pool
    ])
    logging.info('Training the pipeline...')
    conv.train(cifar, 400000, exhaustive=True)

    logging.info('Extracting features...')
    Xtrain = conv.process_dataset(cifar, as_2d=False)
    Ytrain = cifar.labels().astype(np.int)
    Xtest = conv.process_dataset(cifar_test, as_2d=False)
    Ytest = cifar_test.labels().astype(np.int)

    # before we do feature computation, try to do dimensionality reduction
    Xtrain.resize(np.prod(Xtrain.shape[:-1]), Xtrain.shape[-1])
    Xtest.resize(np.prod(Xtest.shape[:-1]), Xtest.shape[-1])

    m, std = classifier.feature_meanstd(Xtrain, 0.01)
    Xtrain -= m
    Xtrain /= std
    Xtest -= m
    Xtest /= std

    covmat = mathutil.mpi_cov(Xtrain)

    current_dim = FLAGS.fromdim
    if FLAGS.svd == 1:
        eigval, eigvec = np.linalg.eigh(covmat)
    while current_dim >= 100:
        if current_dim < FLAGS.fromdim:
            if FLAGS.svd == 1:
                # directly do dimensionality reduction
                U = eigvec[:, -current_dim:]
                Xtrain_red = np.dot(Xtrain, U)
                Xtest_red = np.dot(Xtest, U)
            else:
                # do subsampling
                temp = code_ap.code_af(Xtrain, current_dim)
                logging.info("selected %d dims" % len(temp[0]))
                sel = temp[0]
                Xtrain_red = np.ascontiguousarray(Xtrain[:, sel])
                Xtest_red = np.ascontiguousarray(Xtest[:, sel])
            Xtrain_red.resize(Ytrain.shape[0],
                              Xtrain_red.size / Ytrain.shape[0])
            Xtest_red.resize(Ytest.shape[0], Xtest_red.size / Ytest.shape[0])
        else:
            Xtrain_red = Xtrain.copy()
            Xtest_red = Xtest.copy()
            Xtrain_red.resize(Ytrain.shape[0],
                              Xtrain_red.size / Ytrain.shape[0])
            Xtest_red.resize(Ytest.shape[0], Xtest_red.size / Ytest.shape[0])

        w, b = classifier.l2svm_onevsall(Xtrain_red,
                                         Ytrain,
                                         0.005,
                                         fminargs={
                                             'disp': 0,
                                             'maxfun': 1000
                                         })
        accu_train = classifier.Evaluator.accuracy(Ytrain,
                                                   np.dot(Xtrain_red, w) + b)
        accu_test = classifier.Evaluator.accuracy(Ytest,
                                                  np.dot(Xtest_red, w) + b)
        logging.info('%d - %d, Training accuracy: %f' %
                     (FLAGS.fromdim, current_dim, accu_train))
        logging.info('%d - %d, Testing accuracy: %f' %
                     (FLAGS.fromdim, current_dim, accu_test))
        current_dim /= 2