Пример #1
0
def I3CLSimTabulatePhotons(
        tray,
        name,
        UseCPUs=True,
        UseGPUs=False,
        UseOnlyDeviceNumber=None,
        MCTreeName="I3MCTree",
        OutputMCTreeName=None,
        FlasherInfoVectName=None,
        FlasherPulseSeriesName=None,
        MMCTrackListName="MMCTrackList",
        ParallelEvents=1000,
        RandomService=None,
        MediumProperties=expandvars("$I3_SRC/clsim/resources/ice/spice_mie"),
        UseGeant4=False,
        CrossoverEnergyEM=None,
        CrossoverEnergyHadron=None,
        UseCascadeExtension=False,
        DoNotParallelize=False,
        Area=None,
        WavelengthAcceptance=None,
        AngularAcceptance=None,
        UseHoleIceParameterization=True,
        OverrideApproximateNumberOfWorkItems=None,
        ExtraArgumentsToI3CLSimModule=dict(),
        If=lambda f: True):
    """Do standard clsim processing up to the I3Photon level.
    These photons still need to be converted to I3MCPEs to be usable
    for further steps in the standard IceCube MC processing chain.
    Reads its particles from an I3MCTree and writes an I3PhotonSeriesMap.

    All available OpenCL GPUs (and optionally CPUs) will
    be used. This will take over your entire machine,
    so make sure to configure your batch jobs correctly
    when using this on a cluster.
    When using nVidia cards, you can set the
    CUDA_VISIBLE_DEVICES environment variable to
    limit GPU visibility. A setting of
    CUDA_VISIBLE_DEVICES="0,3" would only use cards
    #0 and #3 and ignore cards #1 and #2. In case you are
    using a batch system, chances are this variable is already
    set. Unfortunately, there is no corresponding setting
    for the AMD driver.

    This segment assumes that MMC has been applied to the
    I3MCTree and that MMC was *NOT* run using the "-recc" option.

    :param UseCPUs:
        Turn this on to also use CPU-based devices.
        (This may potentially slow down photon generation, which
        is also done on the CPU in parallel.)
    :param UseGPUs:
        Turn this off to not use GPU-based devices.
        This may be useful if your GPU is used for display
        purposes and you don't want it to slow down.
    :param UseOnlyDeviceNumber:
        Use only a single device number, even if there is more than
        one device found matching the required description. The numbering
        starts at 0.
    :param MCTreeName:
        The name of the I3MCTree containing the particles to propagate.
    :param OutputMCTreeName:
        A copy of the (possibly sliced) MCTree will be stored as this name.
    :param FlasherInfoVectName:
        Set this to the name of I3FlasherInfoVect objects in the frame to
        enable flasher simulation. The module will read I3FlasherInfoVect objects
        and generate photons according to assumed parameterizations.
    :param FlasherPulseSeriesName:
        Set this to the name of an I3CLSimFlasherPulseSeries object in the frame to
        enable flasher/Standard Candle simulation.
        This cannot be used at the same time as FlasherInfoVectName.
        (I3CLSimFlasherPulseSeries objects are clsim's internal flasher
        representation, if "FlasherInfoVectName" is used, the I3FlasherInfoVect
        objects are converted to I3CLSimFlasherPulseSeries objects.)
    :param MMCTrackListName:
        Only used if *ChopMuons* is active. Set it to the name
        of the I3MMCTrackList object that contains additional
        muon energy loss information.
    :param ParallelEvents:
        clsim will work on a couple of events in parallel in order
        not to starve the GPU. Setting this too high will result
        in excessive memory usage (all your frames have to be cached
        in RAM). Setting it too low may impact simulation performance.
        The optimal value depends on your energy distribution/particle type.
    :param RandomService:
        Set this to an instance of a I3RandomService. Alternatively,
        you can specify the name of a configured I3RandomServiceFactory
        added to I3Tray using tray.AddService(). If you don't configure
        this, the default I3RandomServiceFactory will be used.
    :param MediumProperties:
        Set this either to a directory containing a PPC-compatible
        ice description (icemodel.dat, icemodel.par and cfg.txt) or
        to a photonics ice table file. PPC-compatible ice files should
        generally lead to faster execution times on GPUs since it involves
        less interpolation between table entries (the PPC ice-specification
        is parametric w.r.t. wavelength, whereas the photonics specification
        is not).
    :param Area:
        Geometric area of the sensor. If None, use the area of an IceCube DOM
    :param WavelengthAcceptance:
        Quantum efficiency of the sensor, relative to the geometric area. If
        None, use the IceCube DOM (standard QE)
    :param AngularAcceptance:
        Efficiency as a function of polar angle, relative to the geometric area.
        If None, use the IceCube angular efficiency, assuming hole ice.
    :param UseGeant4:
        Enabling this setting will disable all cascade and muon light yield
        parameterizations. All particles will sent to Geant4 for a full
        simulation. This does **not** apply to muons that do have a length
        assigned. These are assumed to have been generated by MMC and
        their light is generated according to the usual parameterization.
    :param CrossoverEnergyEM:
        If set it defines the crossover energy between full Geant4 simulations and 
        light yield parameterizations for electro magnetic cascades. This only works
        when UseGeant4 is set to true. It works in conjunction with CrossoverEnergyHadron.
        If one of both is set to a positiv value greater 0 (GeV), the hybrid simulation
        is used.
        If CrossoverEnergyEM is set to None while CrossoverEnergyHadron is set so
        hybrid mode is working, GEANT4 is used for EM cascades.
        If CrossoverEnergyEM is set to 0 (GeV) while CrossoverEnergyHadron is set
        so hybrid mode is working, leptons and EM cascades will use parameterizations
        for the whole energy range.
    :param CrossoverEnergyHadron:
        If set it defines the crossover energy between full Geant4 simulations and
        light yield parameterizations for hadronic cascades. This only works when
        UseGeant4 is set to true. It works in conjunction with CrossoverEnergyEM.
        If one of both is set to a positiv value greater 0 (GeV), the hybrid simulation
        is used.
        If CrossoverEnergyHadron is set to None while CrossoverEnergyEM is set so
        hybrid mode is working, GEANT4 is used for hadronic cascades.
        If CrossoverEnergyHadron is set to 0 (GeV) while CrossoverEnergyHadron is
        set so hybrid mode is working, hadronic cascades will use parameterizations
        for the whole energy range.
    :param UseCascadeExtension:
        If True, simulate the longitudinal development of cascades. Otherwise,
        simulate cascades as pointlike objects.
    :param DoNotParallelize:
        Try only using a single work item in parallel when running the
        OpenCL simulation. This might be useful if you want to run jobs
        in parallel on a batch system. This will only affect CPUs and
        will be a no-op for GPUs.
    :param OverrideApproximateNumberOfWorkItems:
        Allows to override the auto-detection for the maximum number of parallel work items.
        You should only change this if you know what you are doing.
    :param If:
        Python function to use as conditional execution test for segment modules.        
    """

    from icecube import icetray, dataclasses, phys_services, clsim

    # make sure the geometry is updated to the new granular format (in case it is supported)
    if hasattr(dataclasses, "I3ModuleGeo"):
        tray.AddModule("I3GeometryDecomposer",
                       name + "_decomposeGeometry",
                       If=lambda frame: If(frame) and
                       ("I3OMGeoMap" not in frame))

    if UseGeant4:
        if not clsim.I3CLSimLightSourceToStepConverterGeant4.can_use_geant4:
            raise RuntimeError(
                "You have requested to use Geant 4, but clsim was compiled without Geant 4 support"
            )

    # at the moment the Geant4 paths need to be set, even if it isn't used
    # TODO: fix this
    if clsim.I3CLSimLightSourceToStepConverterGeant4.can_use_geant4:
        AutoSetGeant4Environment()

    if MMCTrackListName is None or MMCTrackListName == "":
        # the input does not seem to have been processed by MMC
        ChopMuons = False
    else:
        ChopMuons = True

    if MCTreeName is None or MCTreeName == "":
        clSimMCTreeName = ""
        if ChopMuons:
            raise RuntimeError(
                "You cannot have \"MMCTrackListName\" enabled with no MCTree!")
    else:
        clSimMCTreeName = MCTreeName

    if FlasherInfoVectName is None or FlasherInfoVectName == "":
        if (FlasherPulseSeriesName
                is not None) and (FlasherPulseSeriesName != ""):
            SimulateFlashers = True
            clSimFlasherPulseSeriesName = FlasherPulseSeriesName
            clSimOMKeyMaskName = ""
        else:
            SimulateFlashers = False
            clSimFlasherPulseSeriesName = ""
            clSimOMKeyMaskName = ""
    else:
        if (FlasherPulseSeriesName
                is not None) and (FlasherPulseSeriesName != ""):
            raise RuntimeError(
                "You cannot use the FlasherPulseSeriesName and FlasherInfoVectName parameters at the same time!"
            )

        SimulateFlashers = True
        clSimFlasherPulseSeriesName = FlasherInfoVectName + "_pulses"
        clSimOMKeyMaskName = FlasherInfoVectName + "_OMKeys"

        tray.AddModule(clsim.FlasherInfoVectToFlasherPulseSeriesConverter,
                       name + "_FlasherInfoVectToFlasherPulseSeriesConverter",
                       FlasherInfoVectName=FlasherInfoVectName,
                       FlasherPulseSeriesName=clSimFlasherPulseSeriesName,
                       FlasherOMKeyVectName=clSimOMKeyMaskName,
                       If=If)

    # (optional) pre-processing
    if ChopMuons:
        if OutputMCTreeName is not None:
            clSimMCTreeName_new = OutputMCTreeName
        else:
            clSimMCTreeName_new = clSimMCTreeName + "_sliced"

        tray.AddModule("I3MuonSlicer",
                       name + "_chopMuons",
                       InputMCTreeName=clSimMCTreeName,
                       MMCTrackListName=MMCTrackListName,
                       OutputMCTreeName=clSimMCTreeName_new,
                       If=If)
        clSimMCTreeName = clSimMCTreeName_new
    else:
        if (OutputMCTreeName is not None) and (OutputMCTreeName != ""):
            # copy the MCTree to the requested output name
            def copyMCTree(frame, inputName, outputName, If_=None):
                if If_ is not None:
                    if not If_(frame): return
                frame[outputName] = frame[inputName]

            tray.AddModule(copyMCTree,
                           name + "_copyMCTree",
                           inputName=clSimMCTreeName,
                           outputName=OutputMCTreeName,
                           Streams=[icetray.I3Frame.DAQ],
                           If_=If)
            clSimMCTreeName = OutputMCTreeName
        else:
            clSimMCTreeName = clSimMCTreeName

    # some constants
    DOMRadius = 0.16510 * icetray.I3Units.m  # 13" diameter

    if Area is None:
        referenceArea = dataclasses.I3Constants.pi * DOMRadius**2
    else:
        referenceArea = Area
    if WavelengthAcceptance is None:
        domAcceptance = clsim.GetIceCubeDOMAcceptance(domRadius=DOMRadius)
    else:
        domAcceptance = WavelengthAcceptance
    if AngularAcceptance is None:
        angularAcceptance = clsim.GetIceCubeDOMAngularSensitivity(holeIce=True)
    else:
        angularAcceptance = AngularAcceptance

    # muon&cascade parameterizations
    ppcConverter = clsim.I3CLSimLightSourceToStepConverterPPC(
        photonsPerStep=200)
    ppcConverter.SetUseCascadeExtension(UseCascadeExtension)
    if not UseGeant4:
        particleParameterizations = GetDefaultParameterizationList(
            ppcConverter, muonOnly=False)
    else:
        if CrossoverEnergyEM > 0 or CrossoverEnergyHadron > 0:
            particleParameterizations = GetHybridParameterizationList(
                ppcConverter,
                CrossoverEnergyEM=CrossoverEnergyEM,
                CrossoverEnergyHadron=CrossoverEnergyHadron)
        elif MMCTrackListName is None or MMCTrackListName == "":
            particleParameterizations = [
            ]  # make sure absolutely **no** parameterizations are used
        else:
            # use no parameterizations except for muons with lengths assigned to them
            # (those are assumed to have been generated by MMC)
            particleParameterizations = GetDefaultParameterizationList(
                ppcConverter, muonOnly=True)

    # flasher parameterizations
    if SimulateFlashers:
        # this needs a spectrum table in order to pass spectra to OpenCL
        spectrumTable = clsim.I3CLSimSpectrumTable()
        particleParameterizations += GetFlasherParameterizationList(
            spectrumTable)

        icetray.logging.log_debug(
            "number of spectra (1x Cherenkov + Nx flasher): %d" %
            len(spectrumTable),
            unit="clsim")
    else:
        # no spectrum table is necessary when only using the Cherenkov spectrum
        spectrumTable = None

    openCLDevices = configureOpenCLDevices(
        UseGPUs=UseGPUs,
        UseCPUs=UseCPUs,
        OverrideApproximateNumberOfWorkItems=
        OverrideApproximateNumberOfWorkItems,
        DoNotParallelize=DoNotParallelize,
        UseOnlyDeviceNumber=UseOnlyDeviceNumber)

    tray.AddModule(
        "I3CLSimTabulatorModule",
        name + "_clsim",
        MCTreeName=clSimMCTreeName,
        RandomService=RandomService,
        MediumProperties=MediumProperties,
        SpectrumTable=spectrumTable,
        FlasherPulseSeriesName=clSimFlasherPulseSeriesName,
        Area=referenceArea,
        WavelengthAcceptance=domAcceptance,
        AngularAcceptance=angularAcceptance,
        ParameterizationList=particleParameterizations,
        # MaxNumParallelEvents=ParallelEvents,
        OpenCLDeviceList=openCLDevices,
        **ExtraArgumentsToI3CLSimModule)

    unpin_threads()
Пример #2
0
def TabulatePhotonsFromSource(tray,
                              name,
                              PhotonSource="cascade",
                              Zenith=0. * I3Units.degree,
                              Azimuth=0. * I3Units.degree,
                              ZCoordinate=0. * I3Units.m,
                              Energy=1. * I3Units.GeV,
                              FlasherWidth=127,
                              FlasherBrightness=127,
                              Seed=12345,
                              NEvents=100,
                              IceModel='spice_mie',
                              DisableTilt=False,
                              Filename="",
                              TabulateImpactAngle=False,
                              PhotonPrescale=1,
                              Axes=None,
                              Directions=None,
                              Sensor='DOM',
                              RecordErrors=False):
    """
    Tabulate the distribution of photoelectron yields on IceCube DOMs from various
    light sources. The light profiles of the sources are computed from the same
    parameterizations used in PPC, but like in the direct propagation mode can
    be computed using GEANT4 instead.

    The mode of tabulation is controlled primarily by the **PhotonSource** parameter.
    
    - *'cascade'* will simulate an electromagnetic cascade of **Energy** GeV at
      (0, 0, **ZCoordinate**), oriented according to **Zenith** and **Azimuth**.
      The default coordinate system is spherical and centered the given vertex,
      with 200 quadratically spaced bins in radius, 36 linear bins in azimuthal
      angle (only from 0 to 180 degrees by default), 100 linear bins in the
      cosine of the polar angle, and 105 quadratic bins in time residual w.r.t
      the direct path from (0, 0, **ZCoordinate**).
    - *'flasher'* will simulate a 405 nm LED flasher pulse with the given
      **FlasherWidth** and **FlasherBrightness** settings. The source position
      and coordinate system are the same as for the 'cascade' case.
    - *'infinite-muon'* will simulate a "bare" muon of infinite length. The
      coordinate system is cylindrical and centered on the axis of the muon.
      Since the muon's position is degenerate with time, the usual parallel
      distance is replaced by the z coordinate of the closest approach to the
      detection position, and the starting positions of the simulated muons are
      sampled randomly (**ZCoordinate** is ignored). There are 100 quadratic
      bins in perpendicular distance to the source axis, 36 linear bins in
      azimuthal angle (0 to :math:`\pi` radians), 100 linear bins in z
      coordinate of closest approach, and 105 quadratic bins in time residual
      w.r.t. the earliest possible Cherenkov photon.

    :param PhotonSource: the type of photon source ('cascade', 'flasher', or 'infinite-muon').
    :param Zenith: the orientation of the source
    :param ZCoordinate: the depth of the source
    :param Energy: the energy of the source (only for cascade tables)
    :param FlasherWidth: the width of the flasher pulse (only for flasher tables)
    :param FlasherBrightness: the brightness of the flasher pulse (only for flasher tables)
    :param Seed: the seed for the random number service
    :param NEvents: the number of events to simulate
    :param RecordErrors: record the squares of weights as well (useful for error bars)
    :param IceModel: the path to an ice model in $I3_SRC/clsim/resources/ice. Likely values include:
        'spice_mie' ppc-style SPICE-Mie parametrization
        'photonics_spice_1/Ice_table.spice.i3coords.cos080.10feb2010.txt' Photonics-style SPICE1 table
        'photonics_wham/Ice_table.wham.i3coords.cos094.11jul2011.txt' Photonics-style WHAM! table
    :param DisableTilt: if true, disable tilt in ice model
    :param Filename: the name of the FITS file to write
    :param TabulateImpactAngle: if True, tabulate the impact position of the
           photon on the DOM instead of weighting by the DOM's angular acceptance
    :param Axes: a subclass of :cpp:class:`clsim::tabulator::Axes` that defines the coordinate system.
                 If None, an appropriate default will be chosen based on **PhotonSource**.
    :param Directions: a set of directions to allow table generation for multiple sources.
                 If None, only one direction given by **Zenith** and **Azimuth** is used.
       """

    # check sanity of args
    PhotonSource = PhotonSource.lower()
    if PhotonSource not in ['cascade', 'flasher', 'infinite-muon']:
        raise ValueError(
            "photon source %s is unknown. Please specify either 'cascade', 'flasher', or 'infinite-muon'"
            % PhotonSource)

    from icecube import icetray, dataclasses, dataio, phys_services, sim_services, clsim
    from os.path import expandvars

    # a random number generator
    randomService = phys_services.I3GSLRandomService(Seed)

    tray.AddModule("I3InfiniteSource",
                   name + "streams",
                   Stream=icetray.I3Frame.DAQ)

    tray.AddModule("I3MCEventHeaderGenerator",
                   name + "gen_header",
                   Year=2009,
                   DAQTime=158100000000000000,
                   RunNumber=1,
                   EventID=1,
                   IncrementEventID=True)

    if Directions is None:
        Directions = numpy.asarray([(Zenith, Azimuth)])

    if PhotonSource in ('cascade', 'flasher', 'muon-segment'):

        if PhotonSource == 'muon-segment':
            ptype = I3Particle.ParticleType.MuMinus
        else:
            ptype = I3Particle.ParticleType.EMinus

        def reference_source(zenith, azimuth, scale):
            source = I3Particle()
            source.type = ptype
            source.energy = Energy * scale
            source.pos = I3Position(0., 0., ZCoordinate)
            source.dir = I3Direction(zenith, azimuth)
            source.time = 0.
            if PhotonSource == 'muon-segment':
                source.length = 3.
            else:
                source.length = 0.
            source.location_type = I3Particle.LocationType.InIce

            return source

    elif PhotonSource == 'infinite-muon':

        from icecube import MuonGun
        # pad depth to ensure that the track appears effectively infinite
        surface = MuonGun.Cylinder(1800, 800)
        # account for zenith-dependent distribution of track lengths
        length_scale = surface.area(dataclasses.I3Direction(
            0, 0)) / surface.area(dataclasses.I3Direction(Zenith, 0))

        ptype = I3Particle.ParticleType.MuMinus

        def reference_source(zenith, azimuth, scale):
            source = I3Particle()
            source.type = ptype
            source.energy = Energy * scale
            source.dir = I3Direction(zenith, azimuth)
            source.pos = surface.sample_impact_position(
                source.dir, randomService)
            crossings = surface.intersection(source.pos, source.dir)
            source.length = crossings.second - crossings.first
            source.time = 0.
            source.location_type = I3Particle.LocationType.InIce

            return source

    import copy

    class MakeParticle(icetray.I3Module):
        def __init__(self, ctx):
            super(MakeParticle, self).__init__(ctx)
            self.AddOutBox("OutBox")
            self.AddParameter("SourceFunction", "", lambda: None)
            self.AddParameter("NEvents", "", 100)

        def Configure(self):
            self.reference_source = self.GetParameter("SourceFunction")
            self.nevents = self.GetParameter("NEvents")
            self.emittedEvents = 0

        def DAQ(self, frame):
            if PhotonSource != "flasher":
                primary = I3Particle()
                mctree = I3MCTree()
                mctree.add_primary(primary)
                for zenith, azimuth in Directions:
                    source = self.reference_source(zenith, azimuth,
                                                   1. / len(Directions))
                    mctree.append_child(primary, source)
                frame["I3MCTree"] = mctree
                # use the emitting particle as a geometrical reference
                frame["ReferenceParticle"] = source
            else:
                pulseseries = I3CLSimFlasherPulseSeries()
                for zenith, azimuth in Directions:
                    pulse = makeFlasherPulse(0, 0, ZCoordinate, zenith,
                                             azimuth, FlasherWidth,
                                             FlasherBrightness,
                                             1. / len(Directions))
                    pulseseries.append(pulse)
                frame["I3FlasherPulseSeriesMap"] = pulseseries
                frame["ReferenceParticle"] = self.reference_source(
                    Zenith, Azimuth, 1.)

            self.PushFrame(frame)

            self.emittedEvents += 1
            if self.emittedEvents >= self.nevents:
                self.RequestSuspension()

    tray.AddModule(MakeParticle,
                   SourceFunction=reference_source,
                   NEvents=NEvents)

    if PhotonSource == "flasher":
        flasherpulse = "I3FlasherPulseSeriesMap"
        mctree = None
    else:
        flasherpulse = None
        mctree = "I3MCTree"

    header = dict(FITSTable.empty_header)
    header['zenith'] = Zenith / I3Units.degree
    header['azimuth'] = Azimuth / I3Units.degree
    header['z'] = ZCoordinate
    header['energy'] = Energy
    header['type'] = int(ptype)
    header['efficiency'] = Efficiency.RECEIVER | Efficiency.WAVELENGTH
    if PhotonSource == 'infinite-muon':
        header['n_events'] = length_scale * NEvents / float(PhotonPrescale)

    if Axes is None:
        if PhotonSource != "infinite-muon":
            dims = [
                clsim.tabulator.PowerAxis(0, 580, 200, 2),
                clsim.tabulator.LinearAxis(0, 180, 36),
                clsim.tabulator.LinearAxis(-1, 1, 100),
                clsim.tabulator.PowerAxis(0, 7e3, 105, 2),
            ]
            geo = clsim.tabulator.SphericalAxes
        else:
            dims = [
                clsim.tabulator.PowerAxis(0, 580, 100, 2),
                clsim.tabulator.LinearAxis(0, numpy.pi, 36),
                clsim.tabulator.LinearAxis(-8e2, 8e2, 80),
                clsim.tabulator.PowerAxis(0, 7e3, 105, 2),
            ]
            geo = clsim.tabulator.CylindricalAxes
        # Add a dimension for the impact angle
        if TabulateImpactAngle:
            dims.append(clsim.tabulator.LinearAxis(-1, 1, 20))
        Axes = geo(dims)

    if PhotonSource == "flasher":
        header['flasherwidth'] = FlasherWidth
        header['flasherbrightness'] = FlasherBrightness

    # some constants
    DOMRadius = 0.16510 * icetray.I3Units.m  # 13" diameter
    referenceArea = dataclasses.I3Constants.pi * DOMRadius**2

    # NB: GetIceCubeDOMAcceptance() calculates the quantum efficiency by
    #     dividing the geometric area (a circle of radius domRadius) by the
    #     tabulated effective area. Scaling that radius by *sqrt(prescale)*
    #     _reduces_ the effective quantum efficiency by a factor *prescale*.
    #     Since we draw photons directly from the QE-weighted Cherenkov
    #     spectrum, this causes *prescale* fewer photons to be progagated per
    #     light source. We compensate by dividing the number of events by
    #     *prescale* in the header above.
    #     to be propagated per light source.
    domAcceptance = clsim.GetIceCubeDOMAcceptance(
        domRadius=math.sqrt(PhotonPrescale) * DOMRadius)

    if Sensor.lower() == 'dom':
        angularAcceptance = clsim.GetIceCubeDOMAngularSensitivity(holeIce=True)
    elif Sensor.lower() == 'degg':
        referenceArea = dataclasses.I3Constants.pi * (300. * I3Units.mm / 2)**2
        angularAcceptance = Gen2Sensors.GetDEggAngularSensitivity(pmt='both')
        domAcceptance = Gen2Sensors.GetDEggAcceptance(active_fraction=1. /
                                                      PhotonPrescale)
    elif Sensor.lower() == 'wom':
        # outer diameter of the pressure vessel is 11.4 cm, walls are 9 mm thick
        referenceArea = (11 - 2 * 0.9) * 90 * icetray.I3Units.cm2
        angularAcceptance = Gen2Sensors.GetWOMAngularSensitivity()
        domAcceptance = Gen2Sensors.GetWOMAcceptance(active_fraction=1. /
                                                     PhotonPrescale)

    else:
        raise ValueError("Don't know how to simulate %ds yet" % (sensor))

    tray.AddSegment(
        I3CLSimTabulatePhotons,
        name + "makeCLSimPhotons",
        MCTreeName=
        mctree,  # if source is a cascade this will point to the I3MCTree
        FlasherPulseSeriesName=
        flasherpulse,  # if source is a flasher this will point to the I3CLSimFlasherPulseSeries
        MMCTrackListName=None,  # do NOT use MMC
        ParallelEvents=
        1,  # only work at one event at a time (it'll take long enough)
        RandomService=randomService,
        # UnWeightedPhotons=True,
        UseGPUs=
        False,  # table-making is not a workload particularly suited to GPUs
        UseCPUs=True,  # it should work fine on CPUs, though
        Area=referenceArea,
        WavelengthAcceptance=domAcceptance,
        AngularAcceptance=angularAcceptance,
        DoNotParallelize=True,  # no multithreading
        UseGeant4=False,
        OverrideApproximateNumberOfWorkItems=
        1,  # if you *would* use multi-threading, this would be the maximum number of jobs to run in parallel (OpenCL is free to split them)
        ExtraArgumentsToI3CLSimModule=dict(Filename=Filename,
                                           TableHeader=header,
                                           Axes=Axes,
                                           PhotonsPerBunch=200,
                                           EntriesPerPhoton=5000,
                                           RecordErrors=RecordErrors),
        MediumProperties=parseIceModel(
            expandvars("$I3_SRC/clsim/resources/ice/" + IceModel),
            disableTilt=DisableTilt),
    )
Пример #3
0
    #print "maxWorkgroupSizeForKernel:", tester.maxWorkgroupSize

    # the function currently only accepts I3VectorFloat as its input type
    vector = dataclasses.I3VectorFloat(numpy.array(xValues))

    if useReferenceFunction:
        yValues = numpy.array(tester.EvaluateReferenceFunction(vector))
    else:
        yValues = numpy.array(tester.EvaluateFunction(vector))

    return yValues


domAngularAcceptance_holeIce = clsim.GetIceCubeDOMAngularSensitivity(
    holeIce=expandvars(
        "$I3_SRC/ice-models/resources/models/angsens/as.h2-50cm"))
domAngularAcceptance = clsim.GetIceCubeDOMAngularSensitivity(
    holeIce=expandvars(
        "$I3_SRC/ice-models/resources/models/angsens/as.nominal"))

####

fig = pylab.figure(3)
fig.subplots_adjust(left=0.09, bottom=0.05, top=0.95, right=0.98)

ax = fig.add_subplot(3, 1, 1)
bx = fig.add_subplot(3, 1, 2)
cx = fig.add_subplot(3, 1, 3)

cosines = numpy.linspace(-1., 1., num=10000)
Пример #4
0
def I3CLSimMakeHitsFromPhotons(tray,
                               name,
                               MCTreeName="I3MCTree_sliced",
                               PhotonSeriesName="PhotonSeriesMap",
                               MCPESeriesName="MCPESeriesMap",
                               RandomService=None,
                               DOMOversizeFactor=5.,
                               UnshadowedFraction=0.9,
                               UseHoleIceParameterization=True,
                               If=lambda f: True):
    """
    Convert I3Photons into I3MCPEs. This applies the DOM
    angular acceptance (and wavenelgth acceptance in case
    you are using the unbiased photon propagation mode.)

    :param MCTreeName:
        The name of the I3MCTree containing the particles to propagate.
    :param PhotonSeriesName:
        Name of the input I3PhotonSeriesMap to be converted.
    :param MCPESeriesName:
        Name of the output I3MCPESeriesMap written by the module.
        Set this to None to prevent generating MCPEs from
        Photons.
    :param RandomService:
        Set this to an instance of a I3RandomService. Alternatively,
        you can specify the name of a configured I3RandomServiceFactory
        added to I3Tray using tray.AddService(). If you don't configure
        this, the default I3RandomServiceFactory will be used.
    :param DOMOversizeFactor:
        Set the DOM oversize factor. To disable oversizing, set this to 1.
    :param UnshadowedFraction:
        Fraction of photocathode available to receive light (e.g. unshadowed by the cable)
    :param UseHoleIceParameterization:
        Use an angular acceptance correction for hole ice scattering.
    :param If:
        Python function to use as conditional execution test for segment modules.        
    """

    from icecube import icetray, dataclasses, clsim

    # some constants
    DOMRadius = 0.16510 * icetray.I3Units.m  # 13" diameter
    Jitter = 2. * icetray.I3Units.ns

    # detector properties
    domAcceptance = clsim.GetIceCubeDOMAcceptance(
        domRadius=DOMRadius * DOMOversizeFactor, efficiency=UnshadowedFraction)
    domAngularSensitivity = clsim.GetIceCubeDOMAngularSensitivity(
        holeIce=UseHoleIceParameterization)

    tray.AddModule(
        "I3PhotonToMCPEConverter",
        name + "_clsim_make_hits",
        RandomService=RandomService,
        MCTreeName=MCTreeName,
        InputPhotonSeriesMapName=PhotonSeriesName,
        OutputMCPESeriesMapName=MCPESeriesName,
        DOMRadiusWithoutOversize=DOMRadius,
        DOMOversizeFactor=DOMOversizeFactor,
        DOMPancakeFactor=DOMOversizeFactor,
        WavelengthAcceptance=domAcceptance,
        AngularAcceptance=domAngularSensitivity,
        IgnoreDOMsWithoutDetectorStatusEntry=
        False,  # in icesim4 it is the job of the DOM simulation tools to cut out these DOMs
        If=If)
Пример #5
0
def setupDetector(GCDFile,
                  SimulateFlashers=False,
                  IceModelLocation=expandvars("$I3_SRC/clsim/resources/ice/spice_mie"),
                  DisableTilt=False,
                  UnWeightedPhotons=False,
                  UnWeightedPhotonsScalingFactor=None,
                  UseI3PropagatorService=True,
                  UseGeant4=False,
                  CrossoverEnergyEM=None,
                  CrossoverEnergyHadron=None,
                  UseCascadeExtension=True,
                  StopDetectedPhotons=True,
                  DOMOversizeFactor=5.,
                  UnshadowedFraction=0.9,
                  HoleIceParameterization=expandvars("$I3_SRC/ice-models/resources/models/angsens/as.h2-50cm"),
                  WavelengthAcceptance=None,
                  DOMRadius=0.16510*icetray.I3Units.m, # 13" diameter
                  CableOrientation=None,
                  IgnoreSubdetectors=['IceTop']):
    """
    Set up data structures used in N different places in clsim
    :param GCDFile: either a filename or a tuple of (Geometry, Calibration) frames
    """
    
    from icecube import clsim, dataclasses
    from icecube.icetray import logging
    from icecube.clsim import GetDefaultParameterizationList
    from icecube.clsim import GetFlasherParameterizationList
    from icecube.clsim import GetHybridParameterizationList
    from icecube.clsim.GetIceCubeCableShadow import GetIceCubeCableShadow
    import numpy
    
    def harvest_detector_parameters(GCDFile):
        
        from icecube import dataio, dataclasses
        from I3Tray import I3Tray
        
        tray = I3Tray()
        tray.Add(dataio.I3Reader, Filenamelist=[GCDFile])
        
        # make sure the geometry is updated to the new granular format
        tray.AddModule("I3GeometryDecomposer",
                       If=lambda frame: ("I3OMGeoMap" not in frame) and ("I3ModuleGeoMap" not in frame))
        
        def pluck_geo(frame):
            pluck_geo.frame = frame
        pluck_geo.frame = None
        tray.Add(pluck_geo, Streams=[icetray.I3Frame.Geometry])
        
        def pluck_calib(frame):
            pluck_calib.frame = frame
        pluck_calib.frame = None
        tray.Add(pluck_calib, Streams=[icetray.I3Frame.Calibration])
        
        tray.Execute()

        if CableOrientation:
            icetray.logging.log_warn("Explicitly simulating cable shadow. This will reduce overall DOM efficiency by ~10%.", unit="clsim")
            pluck_geo.frame['CableShadow'] = GetIceCubeCableShadow(CableOrientation) if isinstance(CableOrientation, str) else CableOrientation

        geometry = clsim.I3CLSimSimpleGeometryFromI3Geometry(
            DOMRadius, DOMOversizeFactor, pluck_geo.frame,
            ignoreSubdetectors=dataclasses.ListString(IgnoreSubdetectors),
            # NB: we trust advanced users to properly label subdetectors, and disable any
            # min/max string/om numbers and strings/oms to ignore
            ignoreStrings=dataclasses.ListInt(), ignoreDomIDs=dataclasses.ListUInt(),
            ignoreStringIDsSmallerThan=1, ignoreStringIDsLargerThan=numpy.iinfo(numpy.int32).max,
            ignoreDomIDsSmallerThan=1, ignoreDomIDsLargerThan=numpy.iinfo(numpy.uint32).max,
            splitIntoPartsAccordingToPosition=False, useHardcodedDeepCoreSubdetector=False
            )
        
        rde = dict()
        spe_compensation_factor = dict()
        for k, domcal in pluck_calib.frame['I3Calibration'].dom_cal.iteritems():
            rde[k] = domcal.relative_dom_eff
            comp = domcal.combined_spe_charge_distribution.compensation_factor
            spe_compensation_factor[k] = comp if not math.isnan(comp) else 1.

        return geometry, rde, spe_compensation_factor
    
    geometry, rde, spe_compensation_factor = harvest_detector_parameters(GCDFile)

    # ice properties
    if isinstance(IceModelLocation, str):
        mediumProperties = parseIceModel(IceModelLocation, disableTilt=DisableTilt)
    else:
        # get ice model directly if not a string
        mediumProperties = IceModelLocation

    icemodel_efficiency_factor = mediumProperties.efficiency 

    # detector properties
    if WavelengthAcceptance is None:
        # Combine all global factors that enter only the wavelength acceptance
        domEfficiencyCorrection = UnshadowedFraction*icemodel_efficiency_factor
        assert domEfficiencyCorrection > 0
        # The hole ice acceptance curve peaks at a value different than 1. Use
        # this in the wavelength generation 
        maxAngularAcceptance = numpy.loadtxt(HoleIceParameterization)[0]
        assert maxAngularAcceptance > 0

        @memoize
        def getWavelengthAcceptance(rde, spe_comp, efficiency_scale):
            """
            Construct a wavelength acceptance
            
            This is memoized to create only one instance per combination of
            parameters, e.g. one for IceCube and one for DeepCore.
            """
            kwargs = {}
            if round(rde, 6) == 1.35:
                kwargs['highQE'] = True
                # reset RDE to 1; highQE curve is already scaled
                rde = 1
            elif rde != 1:
                raise ValueError("Relative DOM efficiency {} is neither 1 nor 1.35. You probably need to add support for individual DOM efficiencies".format(rde))
            try:
                if not math.isfinite(spe_comp):
                    raise ValueError("SPE compensation factor is {}. Fix your GCD file.".format(spe_comp))
            except AttributeError:
                # likely Python2 isfinite is python3.
                if math.isnan(spe_comp) or math.isinf(spe_comp):
                    raise ValueError("SPE compensation factor is {}. Fix your GCD file.".format(spe_comp))
                
            return clsim.GetIceCubeDOMAcceptance(domRadius = DOMRadius*DOMOversizeFactor, efficiency=rde*spe_comp*efficiency_scale, **kwargs)
        def getEnvelope(functions, scale=1):
            """Construct the supremum of a set of I3CLSimFunctionFromTable"""
            first = functions[0]
            return clsim.I3CLSimFunctionFromTable(
                first.GetMinWlen(),
                first.GetWavelengthStepping(),
                [scale*max((f.GetEntryValue(i) for f in functions)) for i in range(first.GetNumEntries())]
            )

        # Wavelength acceptance of individual DOMs
        domAcceptance = clsim.I3CLSimFunctionMap()
        for string_id,dom_id in zip(geometry.stringIDs,geometry.domIDs):
            k = icetray.OMKey(string_id,dom_id,0)
            if math.isnan(rde.get(k,float('nan'))):
                continue
            try:
                domAcceptance[k] = getWavelengthAcceptance(rde.get(k,float('nan')), spe_compensation_factor.get(k,float('nan')), domEfficiencyCorrection)
            except ValueError as e:
                raise ValueError(str(k)+' '+e.args[0])
        # The wavelength generation bias is the maximum possible value of
        # the product of wavelength acceptance (wvl) and angular acceptance
        # (ang), such that the PE conversion probability, given by 
        # wvl*ang/bias, is never > 1
        domAcceptanceEnvelope = getEnvelope(list(set(domAcceptance.values())), maxAngularAcceptance)

    else:
        domAcceptance = WavelengthAcceptance
        domAcceptanceEnvelope = WavelengthAcceptance
    
    angularAcceptance = clsim.GetIceCubeDOMAngularSensitivity(holeIce=HoleIceParameterization)

    # photon generation wavelength bias
    if not UnWeightedPhotons:
        wavelengthGenerationBias = domAcceptanceEnvelope
        if UnWeightedPhotonsScalingFactor is not None:
            raise RuntimeError("UnWeightedPhotonsScalingFactor should not be set when UnWeightedPhotons is not set")
    else:
        logging.log_info("***** running unweighted simulation with a photon pre-scaling of {}".format(UnWeightedPhotonsScalingFactor), unit="clsim")
        wavelengthGenerationBias = clsim.I3CLSimFunctionConstant(1. if UnWeightedPhotonsScalingFactor is None else UnWeightedPhotonsScalingFactor)

    # create wavelength generators
    wavelengthGenerators = [clsim.makeCherenkovWavelengthGenerator(wavelengthGenerationBias, UnWeightedPhotons, mediumProperties)]
    
    # muon&cascade parameterizations
    ppcConverter = clsim.I3CLSimLightSourceToStepConverterPPC(photonsPerStep=200)
    ppcConverter.SetUseCascadeExtension(UseCascadeExtension)
    if not UseGeant4:
        particleParameterizations = GetDefaultParameterizationList(ppcConverter, muonOnly=False)
    else:
        if CrossoverEnergyEM>0 or CrossoverEnergyHadron>0:
            particleParameterizations = GetHybridParameterizationList(ppcConverter, CrossoverEnergyEM=CrossoverEnergyEM, CrossoverEnergyHadron=CrossoverEnergyHadron)
        else:
            # use no parameterizations except for muons with lengths assigned to them
            # (those are assumed to have been generated by PROPOSAL)
            particleParameterizations = GetDefaultParameterizationList(ppcConverter, muonOnly=True)

    # flasher parameterizations
    if SimulateFlashers:
        # this needs a spectrum table in order to pass spectra to OpenCL
        spectrumTable = clsim.I3CLSimSpectrumTable()
        particleParameterizations += clsim.GetFlasherParameterizationList(spectrumTable)
        for spectrum in spectrumTable:
            if spectrum:
                wavelengthGenerators.append(clsim.makeWavelengthGenerator(spectrum, wavelengthGenerationBias, mediumProperties))
        logging.log_info("number of spectra (1x Cherenkov + Nx flasher): {}".format(len(spectrumTable)), unit="clsim")
    else:
        # no spectrum table is necessary when only using the Cherenkov spectrum
        spectrumTable = None
    
    return dict(Geometry=geometry,
                MediumProperties=mediumProperties,
                IceModelLocation=IceModelLocation,
                WavelengthGenerationBias=wavelengthGenerationBias,
                SpectrumTable=spectrumTable,
                GenerateCherenkovPhotonsWithoutDispersion=UnWeightedPhotons,
                WavelengthGenerators=wavelengthGenerators,
                DOMRadius=DOMRadius,
                DOMOversizeFactor=DOMOversizeFactor,
                DOMPancakeFactor=DOMOversizeFactor,
                UnshadowedFraction=UnshadowedFraction,
                AngularAcceptance=angularAcceptance,
                WavelengthAcceptance=domAcceptance,
                ParameterizationList=particleParameterizations,
                UseGeant4=UseGeant4,
                UseI3PropagatorService=UseI3PropagatorService,
                IgnoreSubdetectors=IgnoreSubdetectors,)
Пример #6
0
def I3CLSimMakeHitsFromPhotons(
        tray,
        name,
        PhotonSeriesName="PhotonSeriesMap",
        MCPESeriesName="MCPESeriesMap",
        RandomService=None,
        DOMOversizeFactor=5.,
        UnshadowedFraction=1.0,
        IceModelLocation=None,  #Needed for icemodel-dependent efficiency
        HoleIceParameterization=expandvars(
            "$I3_BUILD/ice-models/resources/models/angsens/as.h2-50cm"),
        MergeHits=False,
        GCDFile=None,
        If=lambda f: True):
    """
    Convert I3Photons into I3MCPEs. This applies the DOM
    angular acceptance (and wavenelgth acceptance in case
    you are using the unbiased photon propagation mode.)

    :param PhotonSeriesName:
        Name of the input I3PhotonSeriesMap to be converted.
    :param MCPESeriesName:
        Name of the output I3MCPESeriesMap written by the module.
        Set this to None to prevent generating MCPEs from
        Photons.
    :param RandomService:
        Set this to an instance of a I3RandomService. Alternatively,
        you can specify the name of a configured I3RandomServiceFactory
        added to I3Tray using tray.AddService(). If you don't configure
        this, the default I3RandomServiceFactory will be used.
    :param DOMOversizeFactor:
        Set the DOM oversize factor. To disable oversizing, set this to 1.
    :param UnshadowedFraction:
        Fraction of photocathode available to receive light (e.g. unshadowed by the cable)
    :param HoleIceParameterization:
        Set this to a hole ice parameterization file. The default file contains the 
        coefficients for nominal angular acceptance correction due to hole ice (ice-models 
        project is required). Use file $I3_BUILD/ice-models/resources/models/angsens/as.nominal 
        for no hole ice parameterization. 
    :param MergeHits:
    	Set to true to perform time merging on the MCPE as they are produced. This is useful for 
    	reducing the memory and disk space used by high energy (bright) events, and can allow 
    	detector simulation to run much more quickly. This causes parent particle information to be 
    	stored in an additional frame object. 
    :param If:
        Python function to use as conditional execution test for segment modules.        
    """

    from icecube import icetray, dataclasses, clsim
    from icecube.clsim.traysegments.common import parseIceModel

    icemodel_efficiency_factor = 1.0
    # ice properties
    if isinstance(IceModelLocation, str):
        mediumProperties = parseIceModel(IceModelLocation)
    else:
        # get ice model directly if not a string
        mediumProperties = IceModelLocation

    if mediumProperties is not None:
        # IceModel-dependent efficiency
        icemodel_efficiency_factor = mediumProperties.efficiency
    else:
        icetray.logging.log_warn(
            "No IceModel configured. Using DOMefficiency of %f" %
            icemodel_efficiency_factor)

    if UnshadowedFraction <= 0:
        raise RuntimeError("UnshadowedFraction must be a positive number")

    # some constants
    DOMRadius = 0.16510 * icetray.I3Units.m  # 13" diameter
    Jitter = 2. * icetray.I3Units.ns

    # detector properties

    max_compensation_factor = 1.0
    if GCDFile is None:
        icetray.logging.log_warn(
            "No GCD file given. Setting compensation factor to 1.0!!!!")
    else:
        max_compensation_factor = get_compensation_factor(
            dataio.I3File(GCDFile))

    icetray.logging.log_info(
        "Net DOM efficiency (with compensation factor): %s" %
        (UnshadowedFraction * icemodel_efficiency_factor *
         max_compensation_factor))

    domAcceptance = clsim.GetIceCubeDOMAcceptance(
        domRadius=DOMRadius * DOMOversizeFactor,
        efficiency=icemodel_efficiency_factor * UnshadowedFraction)
    domAngularSensitivity = clsim.GetIceCubeDOMAngularSensitivity(
        holeIce=HoleIceParameterization)

    tray.AddModule(
        "I3PhotonToMCPEConverter",
        name + "_clsim_make_hits",
        RandomService=RandomService,
        InputPhotonSeriesMapName=PhotonSeriesName,
        OutputMCPESeriesMapName=MCPESeriesName,
        DOMRadiusWithoutOversize=DOMRadius,
        DOMOversizeFactor=DOMOversizeFactor,
        DOMPancakeFactor=DOMOversizeFactor,
        WavelengthAcceptance=domAcceptance,
        AngularAcceptance=domAngularSensitivity,
        IgnoreDOMsWithoutDetectorStatusEntry=
        False,  # in icesim4 it is the job of the DOM simulation tools to cut out these DOMs
        MergeHits=MergeHits,
        If=If)
Пример #7
0
                                                   wlenDependentValue=functionOpenCL)
    
    #print "maxWorkgroupSizeForKernel:", tester.maxWorkgroupSize
    
    # the function currently only accepts I3VectorFloat as its input type
    vector = dataclasses.I3VectorFloat(numpy.array(xValues))
    
    if useReferenceFunction:
        yValues = numpy.array(tester.EvaluateReferenceFunction(vector))
    else:
        yValues = numpy.array(tester.EvaluateFunction(vector))
    
    return yValues


domAngularAcceptance_holeIce = clsim.GetIceCubeDOMAngularSensitivity(holeIce=True)
domAngularAcceptance = clsim.GetIceCubeDOMAngularSensitivity(holeIce=False)

####


fig = pylab.figure(3)
fig.subplots_adjust(left=0.09, bottom=0.05, top=0.95, right=0.98)

ax = fig.add_subplot(3, 1, 1)
bx = fig.add_subplot(3, 1, 2)
cx = fig.add_subplot(3, 1, 3)


cosines=numpy.linspace(-1.,1.,num=10000)
Пример #8
0
def setupDetector(
        GCDFile,
        SimulateFlashers=False,
        IceModelLocation=expandvars("$I3_SRC/clsim/resources/ice/spice_mie"),
        DisableTilt=False,
        UnWeightedPhotons=False,
        UnWeightedPhotonsScalingFactor=None,
        MMCTrackListName="MMCTrackList",
        UseGeant4=False,
        CrossoverEnergyEM=None,
        CrossoverEnergyHadron=None,
        UseCascadeExtension=True,
        StopDetectedPhotons=True,
        DOMOversizeFactor=5.,
        UnshadowedFraction=0.9,
        HoleIceParameterization=expandvars(
            "$I3_SRC/ice-models/resources/models/angsens/as.h2-50cm"),
        WavelengthAcceptance=None,
        DOMRadius=0.16510 * icetray.I3Units.m,  # 13" diameter
        IgnoreSubdetectors=['IceTop']):
    """
    Set up data structures used in N different places in clsim
    """

    from icecube import clsim
    from icecube.clsim import GetDefaultParameterizationList
    from icecube.clsim import GetFlasherParameterizationList
    from icecube.clsim import GetHybridParameterizationList
    import numpy

    def harvest_detector_parameters(GCDFile):

        from icecube import dataio, dataclasses
        from I3Tray import I3Tray

        tray = I3Tray()
        tray.Add(dataio.I3Reader, Filenamelist=[GCDFile])

        # make sure the geometry is updated to the new granular format
        tray.AddModule("I3GeometryDecomposer",
                       If=lambda frame: ("I3OMGeoMap" not in frame) and
                       ("I3ModuleGeoMap" not in frame))

        def pluck_geo(frame):
            pluck_geo.frame = frame

        pluck_geo.frame = None
        tray.Add(pluck_geo, Streams=[icetray.I3Frame.Geometry])

        def pluck_calib(frame):
            pluck_calib.frame = frame

        pluck_calib.frame = None
        tray.Add(pluck_calib, Streams=[icetray.I3Frame.Calibration])

        tray.Execute()

        geometry = clsim.I3CLSimSimpleGeometryFromI3Geometry(
            DOMRadius,
            DOMOversizeFactor,
            pluck_geo.frame,
            ignoreSubdetectors=dataclasses.ListString(IgnoreSubdetectors),
            # NB: we trust advanced users to properly label subdetectors, and disable any
            # min/max string/om numbers and strings/oms to ignore
            ignoreStrings=dataclasses.ListInt(),
            ignoreDomIDs=dataclasses.ListUInt(),
            ignoreStringIDsSmallerThan=1,
            ignoreStringIDsLargerThan=numpy.iinfo(numpy.int32).max,
            ignoreDomIDsSmallerThan=1,
            ignoreDomIDsLargerThan=numpy.iinfo(numpy.uint32).max,
            splitIntoPartsAccordingToPosition=False,
            useHardcodedDeepCoreSubdetector=False)

        rde = dict()
        for k, domcal in pluck_calib.frame['I3Calibration'].dom_cal.iteritems(
        ):
            rde[k] = domcal.relative_dom_eff

        return geometry, rde

    geometry, rde = harvest_detector_parameters(GCDFile)

    # ice properties
    if isinstance(IceModelLocation, str):
        mediumProperties = parseIceModel(IceModelLocation,
                                         disableTilt=DisableTilt)
    else:
        # get ice model directly if not a string
        mediumProperties = IceModelLocation

    # detector properties
    if WavelengthAcceptance is None:
        # the hole ice acceptance curve peaks at a value different than 1
        peak = numpy.loadtxt(HoleIceParameterization)[
            0]  # The value at which the hole ice acceptance curve peaks
        domEfficiencyCorrection = UnshadowedFraction * peak

        acceptance = {
            'IceCube':
            clsim.GetIceCubeDOMAcceptance(domRadius=DOMRadius *
                                          DOMOversizeFactor,
                                          efficiency=domEfficiencyCorrection),
            'DeepCore':
            clsim.GetIceCubeDOMAcceptance(domRadius=DOMRadius *
                                          DOMOversizeFactor,
                                          efficiency=domEfficiencyCorrection,
                                          highQE=True),
        }

        domAcceptanceEnvelope = clsim.I3CLSimFunctionFromTable(
            acceptance['IceCube'].GetMinWlen(),
            acceptance['IceCube'].GetWavelengthStepping(), [
                max((f.GetEntryValue(i) for f in acceptance.values()))
                for i in range(acceptance['IceCube'].GetNumEntries())
            ])

        domAcceptance = clsim.I3CLSimFunctionMap()
        #loop over every event in the geometry and determine what type of DOM it is
        #based on the relative efficiency in the detector status
        for string_id, dom_id in zip(geometry.stringIDs, geometry.domIDs):
            k = icetray.OMKey(string_id, dom_id, 0)
            releff = rde.get(k, float('nan'))
            if releff == 1:
                domAcceptance[k] = acceptance['IceCube']
            elif round(releff, 6) == 1.35:
                domAcceptance[k] = acceptance['DeepCore']
            elif math.isnan(releff):
                #DOMs where rde is nan are bad DOMs which are unplugged
                #call them IceCube for now, hits generated by them will be
                #removed later by detector simulation
                domAcceptance[k] = acceptance['IceCube']
            else:
                raise ValueError(
                    "Relative DOM efficiency is neither 1 nor 1.35. You probably need to add support for individual DOM efficiencies"
                )

    else:
        domAcceptance = WavelengthAcceptance
        domAcceptanceEnvelope = WavelengthAcceptance

    angularAcceptance = clsim.GetIceCubeDOMAngularSensitivity(
        holeIce=HoleIceParameterization)

    # photon generation wavelength bias
    if not UnWeightedPhotons:
        wavelengthGenerationBias = domAcceptanceEnvelope
        if UnWeightedPhotonsScalingFactor is not None:
            raise RuntimeError(
                "UnWeightedPhotonsScalingFactor should not be set when UnWeightedPhotons is not set"
            )
    else:
        if UnWeightedPhotonsScalingFactor is not None:
            print(
                "***** running unweighted simulation with a photon pre-scaling of",
                UnWeightedPhotonsScalingFactor)
            wavelengthGenerationBias = clsim.I3CLSimFunctionConstant(
                UnWeightedPhotonsScalingFactor)
        else:
            wavelengthGenerationBias = None

    # create wavelength generators
    wavelengthGenerators = [
        clsim.makeCherenkovWavelengthGenerator(wavelengthGenerationBias,
                                               UnWeightedPhotons,
                                               mediumProperties)
    ]

    # flasher parameterizations
    if SimulateFlashers:
        # this needs a spectrum table in order to pass spectra to OpenCL
        spectrumTable = clsim.I3CLSimSpectrumTable()
        for spectrum in spectrumTable:
            wavelengthGenerators.append(
                makeWavelengthGenerator(spectrum, wavelengthGenerationBias,
                                        mediumProperties))
        print("number of spectra (1x Cherenkov + Nx flasher):",
              len(spectrumTable))
    else:
        # no spectrum table is necessary when only using the Cherenkov spectrum
        spectrumTable = None

    # muon&cascade parameterizations
    ppcConverter = clsim.I3CLSimLightSourceToStepConverterPPC(
        photonsPerStep=200)
    ppcConverter.SetUseCascadeExtension(UseCascadeExtension)
    if not UseGeant4:
        particleParameterizations = GetDefaultParameterizationList(
            ppcConverter, muonOnly=False)
    else:
        if CrossoverEnergyEM > 0 or CrossoverEnergyHadron > 0:
            particleParameterizations = GetHybridParameterizationList(
                ppcConverter,
                CrossoverEnergyEM=CrossoverEnergyEM,
                CrossoverEnergyHadron=CrossoverEnergyHadron)
        elif MMCTrackListName is None or MMCTrackListName == "":
            particleParameterizations = [
            ]  # make sure absolutely **no** parameterizations are used
        else:
            # use no parameterizations except for muons with lengths assigned to them
            # (those are assumed to have been generated by MMC)
            particleParameterizations = GetDefaultParameterizationList(
                ppcConverter, muonOnly=True)

    return dict(Geometry=geometry,
                MediumProperties=mediumProperties,
                IceModelLocation=IceModelLocation,
                WavelengthGenerationBias=wavelengthGenerationBias,
                SpectrumTable=spectrumTable,
                GenerateCherenkovPhotonsWithoutDispersion=UnWeightedPhotons,
                WavelengthGenerators=wavelengthGenerators,
                DOMRadius=DOMRadius,
                DOMOversizeFactor=DOMOversizeFactor,
                DOMPancakeFactor=DOMOversizeFactor,
                UnshadowedFraction=UnshadowedFraction,
                AngularAcceptance=angularAcceptance,
                WavelengthAcceptance=domAcceptance,
                ParameterizationList=particleParameterizations,
                IgnoreSubdetectors=IgnoreSubdetectors)
Пример #9
0
    def getDetectorParameters(
            IceModel="spice_lea",
            DisableTilt=False,
            UnshadowedFraction=0.95,  #1.,match the clsim setting
            UseHoleIceParameterization=True,
            DOMOversizeFactor=5.,
            UnWeightedPhotons=False):

        DOMRadius = 0.16510 * icetray.I3Units.m  # 13" diameter

        # ice properties
        if isinstance(IceModel, str):
            mediumProperties = parseIceModel(os.path.expandvars(
                '$I3_BUILD/clsim/resources/ice/%s' % IceModel),
                                             disableTilt=DisableTilt)
        else:
            # get ice model directly if not a string
            mediumProperties = IceModel

        # detector properties
        if UseHoleIceParameterization:
            print "calculating DOM efficiency correction using hole ice"
            # the hole ice acceptance curve peaks at 0.75 instead of 1
            domEfficiencyCorrection = UnshadowedFraction * 0.75 * 1.35 * 1.01  # DeepCore DOMs have a relative efficiency of 1.35 plus security margin of +1%
        else:
            domEfficiencyCorrection = UnshadowedFraction * 1.35 * 1.01  # security margin of +1%
        print "from tray segment: domEfficiencyCorrection is  ", domEfficiencyCorrection
        domAcceptance = clsim.GetIceCubeDOMAcceptance(
            domRadius=DOMRadius * DOMOversizeFactor,
            efficiency=domEfficiencyCorrection)
        print "from tray segment: domAcceptance NumEntries is  ", domAcceptance.GetNumEntries(
        )
        print "from tray segment: domAcceptance MinWlen is  ", domAcceptance.GetMinWlen(
        )
        print "from tray segment: domAcceptance MaxWlen is  ", domAcceptance.GetMaxWlen(
        )
        print "from tray segment: domAcceptance FirstWlen is  ", domAcceptance.GetFirstWavelength(
        )
        print "from tray segment: domAcceptance WlenStepping is  ", domAcceptance.GetWavelengthStepping(
        )
        print "from tray segment: domAcceptance 4th entry value is  ", domAcceptance.GetEntryValue(
            4)
        print "from tray segment: domAcceptance 4th entry wlen is  ", domAcceptance.GetEntryWavelength(
            4)
        domAngularSensitivity = clsim.GetIceCubeDOMAngularSensitivity(
            holeIce=UseHoleIceParameterization)
        print "from tray segment: domAngularSensitivity coefficients are  ", domAngularSensitivity.GetCoefficients(
        )
        print "from tray segment: with hole ice  ", UseHoleIceParameterization

        if not UnWeightedPhotons:
            wavelengthGenerationBias = domAcceptance
        else:
            wavelengthGenerationBias = None
        print "from tray segment: wavelengthGenerationBias is  ", wavelengthGenerationBias

        wavelengthGenerators = clsim.I3CLSimRandomValuePtrSeries()
        wavelengthGenerators.append(
            clsim.makeCherenkovWavelengthGenerator(wavelengthGenerationBias,
                                                   False, mediumProperties))
        print "from tray segment: wavelengthGenerators is  ", wavelengthGenerators  #[0].NumberOfParameters() #no pybindings?
        return mediumProperties, wavelengthGenerationBias, wavelengthGenerators, domAcceptance, domAngularSensitivity, DOMOversizeFactor