def __init__(self, all_possible_genes, retain=0.15, random_select=0.1, mutate_chance=0.3): """Create an optimizer. Args: all_possible_genes (dict): Possible genome parameters retain (float): Percentage of population to retain after each generation random_select (float): Probability of a rejected genome remaining in the population mutate_chance (float): Probability a genome will be randomly mutated """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance #set the ID gen self.ids = IDgen()
def __init__(self, all_possible_genes, retain=0.15, random_select=0.1, mutate_chance=0.3, opt_for_highest=True): """Create an optimizer. Args: all_possible_genes (dict): Possible genome parameters retain (float): Percentage of population to retain after each generation random_select (float): Probability of a rejected genome remaining in the population mutate_chance (float): Probability a genome will be randomly mutated opt_for_highest (bool): If False, will optimize for lowest value (e.g. loss), if True then for highest value (e.g. accuracy) """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance self.opt_for_highest = opt_for_highest # Genome store self.master = None # set the ID gen self.ids = IDgen()
def __init__(self, all_possible_genes, retain=0.15, random_select=0.1, mutate_chance=0.3): """Create an optimizer. Args: all_possible_genes (dict): Possible genes (i.e., network hyperparameters) retain (float): Proportion of top-performing genomes to retain for the next generation random_select (float): Probabilty of a non-top-performing genome to retain for the next generation mutate_chance (float): Probability a genome will be randomly mutated """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance #set the ID gen self.ids = IDgen()
class Evolver(): """Class that implements genetic algorithm.""" def __init__(self, all_possible_genes, retain=0.15, random_select=0.1, mutate_chance=0.3): """Create an optimizer. Args: all_possible_genes (dict): Possible genome parameters retain (float): Percentage of population to retain after each generation random_select (float): Probability of a rejected genome remaining in the population mutate_chance (float): Probability a genome will be randomly mutated """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance #set the ID gen self.ids = IDgen() def create_population(self, count): """Create a population of random networks. Args: count (int): Number of networks to generate, aka the size of the population Returns: (list): Population of network objects """ pop = [] i = 0 while i < count: # Initialize a new genome. genome = Genome(self.all_possible_genes, {}, self.ids.get_next_ID(), 0, 0, self.ids.get_Gen()) # Set it to random parameters. genome.set_genes_random() if i == 0: #this is where we will store all genomes self.master = AllGenomes(genome) else: # Make sure it is unique.... while self.master.is_duplicate(genome): genome.mutate_one_gene() # Add the genome to our population. pop.append(genome) # and add to the master list if i > 0: self.master.add_genome(genome) i += 1 #self.master.print_all_genomes() #exit() return pop @staticmethod def fitness(genome): """Return the accuracy, which is our fitness function.""" return genome.accuracy def grade(self, pop): """Find average fitness for a population. Args: pop (list): The population of networks/genome Returns: (float): The average accuracy of the population """ summed = reduce(add, (self.fitness(genome) for genome in pop)) return summed / float((len(pop))) def breed(self, mom, dad): """Make two children from parental genes. Args: mother (dict): genome parameters father (dict): genome parameters Returns: (list): Two network objects """ children = [] #where do we recombine? 0, 1, 2, 3, 4... N? #with four genes, there are three choices for the recombination # ___ * ___ * ___ * ___ #0 -> no recombination, and N == length of dictionary -> no recombination #0 and 4 just (re)create more copies of the parents #so the range is always 1 to len(all_possible_genes) - 1 pcl = len(self.all_possible_genes) recomb_loc = random.randint(1, pcl - 1) #for _ in range(2): #make _two_ children - could also make more child1 = {} child2 = {} #enforce defined genome order using list #keys = ['nb_neurons', 'nb_layers', 'activation', 'optimizer'] keys = list(self.all_possible_genes) keys = sorted( keys ) #paranoia - just to make sure we do not add unintentional randomization #*** CORE RECOMBINATION CODE **** for x in range(0, pcl): if x < recomb_loc: child1[keys[x]] = mom.geneparam[keys[x]] child2[keys[x]] = dad.geneparam[keys[x]] else: child1[keys[x]] = dad.geneparam[keys[x]] child2[keys[x]] = mom.geneparam[keys[x]] # Initialize a new genome # Set its parameters to those just determined # they both have the same mom and dad genome1 = Genome(self.all_possible_genes, child1, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen()) genome2 = Genome(self.all_possible_genes, child2, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen()) #at this point, there is zero guarantee that the genome is actually unique # Randomly mutate one gene if self.mutate_chance > random.random(): genome1.mutate_one_gene() if self.mutate_chance > random.random(): genome2.mutate_one_gene() #do we have a unique child or are we just retraining one we already have anyway? while self.master.is_duplicate(genome1): genome1.mutate_one_gene() self.master.add_genome(genome1) while self.master.is_duplicate(genome2): genome2.mutate_one_gene() self.master.add_genome(genome2) children.append(genome1) children.append(genome2) return children def evolve(self, pop): """Evolve a population of genomes. Args: pop (list): A list of genome parameters Returns: (list): The evolved population of networks """ #increase generation self.ids.increase_Gen() # Get scores for each genome graded = [(self.fitness(genome), genome) for genome in pop] #and use those scores to fill in the master list for genome in pop: self.master.set_accuracy(genome) # Sort on the scores. graded = [ x[1] for x in sorted(graded, key=lambda x: x[0], reverse=True) ] # Get the number we want to keep unchanged for the next cycle. retain_length = int(len(graded) * self.retain) # In this first step, we keep the 'top' X percent (as defined in self.retain) # We will not change them, except we will update the generation new_generation = graded[:retain_length] # For the lower scoring ones, randomly keep some anyway. # This is wasteful, since we _know_ these are bad, so why keep rescoring them without modification? # At least we should mutate them for genome in graded[retain_length:]: if self.random_select > random.random(): gtc = copy.deepcopy(genome) while self.master.is_duplicate(gtc): gtc.mutate_one_gene() gtc.set_generation(self.ids.get_Gen()) new_generation.append(gtc) self.master.add_genome(gtc) # Now find out how many spots we have left to fill. ng_length = len(new_generation) desired_length = len(pop) - ng_length children = [] # Add children, which are bred from pairs of remaining (i.e. very high or lower scoring) genomes. while len(children) < desired_length: # Get a random mom and dad, but, need to make sure they are distinct parents = random.sample(range(ng_length - 1), k=2) i_male = parents[0] i_female = parents[1] male = new_generation[i_male] female = new_generation[i_female] # Recombine and mutate babies = self.breed(male, female) # the babies are guaranteed to be novel # Add the children one at a time. for baby in babies: # Don't grow larger than desired length. #if len(children) < desired_length: children.append(baby) new_generation.extend(children) return new_generation
class Evolver(): """Class that implements genetic algorithm.""" def __init__(self, all_possible_genes, retain=0.15, random_select=0.1, mutate_chance=0.3): """Create an optimizer. Args: all_possible_genes (dict): Possible genes (i.e., network hyperparameters) retain (float): Proportion of top-performing genomes to retain for the next generation random_select (float): Probabilty of a non-top-performing genome to retain for the next generation mutate_chance (float): Probability a genome will be randomly mutated """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance #set the ID gen self.ids = IDgen() def create_population(self, count): """Create a population of random genomes. Args: count (int): Number of genomes to generate, aka the size of the population Returns: (list): Population of genome objects """ pop = [] i = 0 while i < count: #initialize a new genome genome = Genome(self.all_possible_genes, {}, self.ids.get_next_ID(), 0, 0, self.ids.get_Gen()) #set it to random parameters genome.set_genes_random() if i == 0: #this is where we will store all genomes self.master = AllGenomes(genome) else: #make sure it is unique.... while self.master.is_duplicate(genome): genome.mutate_one_gene() #add the genome to our population pop.append(genome) #and add to the master list if i > 0: self.master.add_genome(genome) i += 1 return pop @staticmethod def fitness(genome): """Return the accuracy, which is our fitness function.""" return genome.accuracy def grade(self, pop): """Find average fitness for a population. Args: pop (list): The population of genomes Returns: (float): The average accuracy of the population """ summed = reduce(add, (self.fitness(genome) for genome in pop)) return summed / float((len(pop))) def breed(self, mom, dad): """Make two children from parental genes. Args: mother (dict): genome parameters father (dict): genome parameters Returns: (list): Two genome objects """ children = [] nr_genes = len(self.all_possible_genes) #get a gene location for single-point crossover crossover_loc = random.randint(1, nr_genes - 1) child1 = {} child2 = {} #enforce defined genome order using list keys = list(self.all_possible_genes) keys = sorted(keys) #perform single-point crossover for x in range(0, nr_genes): if x < crossover_loc: child1[keys[x]] = mom.geneparam[keys[x]] child2[keys[x]] = dad.geneparam[keys[x]] else: child1[keys[x]] = dad.geneparam[keys[x]] child2[keys[x]] = mom.geneparam[keys[x]] #initialize a new genome #set its parameters to those just determined #they both have the same mom and dad genome1 = Genome(self.all_possible_genes, child1, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen()) genome2 = Genome(self.all_possible_genes, child2, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen()) #randomly mutate one gene if self.mutate_chance > random.random(): genome1.mutate_one_gene() if self.mutate_chance > random.random(): genome2.mutate_one_gene() #if child is a duplicate within the new generation, mutate a gene while self.master.is_duplicate(genome1): genome1.mutate_one_gene() self.master.add_genome(genome1) while self.master.is_duplicate(genome2): genome2.mutate_one_gene() self.master.add_genome(genome2) children.append(genome1) children.append(genome2) return children def evolve(self, pop): """Evolve a population of genomes. Args: pop (list): A list of genome parameters Returns: (list): The evolved population of genomes """ #increase generation self.ids.increase_Gen() #get scores for each genome graded = [(self.fitness(genome), genome) for genome in pop] #and use those scores to fill in the master list for genome in pop: self.master.set_accuracy(genome) #sort on the scores graded = [ x[1] for x in sorted(graded, key=lambda x: x[0], reverse=True) ] #get the number we want to keep unchanged for the next cycle retain_length = int(len(graded) * self.retain) #in this first step, we keep the 'top' X percent (as defined in self.retain) #we will not change them, except we will update the generation new_generation = graded[:retain_length] #for the lower scoring ones, randomly keep some anyway for genome in graded[retain_length:]: if self.random_select > random.random(): randomgenome = copy.deepcopy(genome) while self.master.is_duplicate(randomgenome): randomgenome.mutate_one_gene() randomgenome.set_generation(self.ids.get_Gen()) new_generation.append(randomgenome) self.master.add_genome(randomgenome) #now find out how many spots we have left to fill in the new generation ng_length = len(new_generation) desired_length = len(pop) - ng_length children = [] #add children, which are bred from pairs of genomes in the new generation (i.e. retained and randomly selected genomes) while len(children) < desired_length: #get a random mom and dad, but, need to make sure they are distinct parents = random.sample(range(ng_length - 1), k=2) i_male = parents[0] i_female = parents[1] male = new_generation[i_male] female = new_generation[i_female] #do crossover and mutation babies = self.breed(male, female) #the babies are guaranteed to be novel #add the children one at a time for baby in babies: children.append(baby) new_generation.extend(children) return new_generation
class Evolver(): """Class that implements genetic algorithm.""" def __init__(self, all_possible_genes, retain=0.15, random_select=0.1, mutate_chance=0.3): """Create an optimizer. Args: all_possible_genes (dict): Possible genome parameters retain (float): Percentage of population to retain after each generation random_select (float): Probability of a rejected genome remaining in the population mutate_chance (float): Probability a genome will be randomly mutated """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance #set the ID gen self.ids = IDgen() def create_population(self, count): """Create a population of random networks. Args: count (int): Number of networks to generate, aka the size of the population Returns: (list): Population of network objects """ pop = [] i = 0 while i < count: # Initialize a new genome. genome = Genome( self.all_possible_genes, {}, self.ids.get_next_ID(), 0, 0, self.ids.get_Gen() ) # Set it to random parameters. genome.set_genes_random() if i == 0: #this is where we will store all genomes self.master = AllGenomes( genome ) else: # Make sure it is unique.... while self.master.is_duplicate( genome ): genome.mutate_one_gene() # Add the genome to our population. pop.append(genome) # and add to the master list if i > 0: self.master.add_genome(genome) i += 1 #self.master.print_all_genomes() #exit() return pop @staticmethod def fitness(genome): """Return the accuracy, which is our fitness function.""" return genome.accuracy def grade(self, pop): """Find average fitness for a population. Args: pop (list): The population of networks/genome Returns: (float): The average accuracy of the population """ summed = reduce(add, (self.fitness(genome) for genome in pop)) return summed / float((len(pop))) def breed(self, mom, dad): """Make two children from parental genes. Args: mother (dict): genome parameters father (dict): genome parameters Returns: (list): Two network objects """ children = [] #where do we recombine? 0, 1, 2, 3, 4... N? #with four genes, there are three choices for the recombination # ___ * ___ * ___ * ___ #0 -> no recombination, and N == length of dictionary -> no recombination #0 and 4 just (re)create more copies of the parents #so the range is always 1 to len(all_possible_genes) - 1 pcl = len(self.all_possible_genes) recomb_loc = random.randint(1,pcl - 1) #for _ in range(2): #make _two_ children - could also make more child1 = {} child2 = {} #enforce defined genome order using list #keys = ['nb_neurons', 'nb_layers', 'activation', 'optimizer'] keys = list(self.all_possible_genes) keys = sorted(keys) #paranoia - just to make sure we do not add unintentional randomization #*** CORE RECOMBINATION CODE **** for x in range(0, pcl): if x < recomb_loc: child1[keys[x]] = mom.geneparam[keys[x]] child2[keys[x]] = dad.geneparam[keys[x]] else: child1[keys[x]] = dad.geneparam[keys[x]] child2[keys[x]] = mom.geneparam[keys[x]] # Initialize a new genome # Set its parameters to those just determined # they both have the same mom and dad genome1 = Genome( self.all_possible_genes, child1, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen() ) genome2 = Genome( self.all_possible_genes, child2, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen() ) #at this point, there is zero guarantee that the genome is actually unique # Randomly mutate one gene if self.mutate_chance > random.random(): genome1.mutate_one_gene() if self.mutate_chance > random.random(): genome2.mutate_one_gene() #do we have a unique child or are we just retraining one we already have anyway? while self.master.is_duplicate(genome1): genome1.mutate_one_gene() self.master.add_genome(genome1) while self.master.is_duplicate(genome2): genome2.mutate_one_gene() self.master.add_genome(genome2) children.append(genome1) children.append(genome2) return children def evolve(self, pop): """Evolve a population of genomes. Args: pop (list): A list of genome parameters Returns: (list): The evolved population of networks """ #increase generation self.ids.increase_Gen() # Get scores for each genome graded = [(self.fitness(genome), genome) for genome in pop] #and use those scores to fill in the master list for genome in pop: self.master.set_accuracy(genome) # Sort on the scores. graded = [x[1] for x in sorted(graded, key=lambda x: x[0], reverse=True)] # Get the number we want to keep unchanged for the next cycle. retain_length = int(len(graded)*self.retain) # In this first step, we keep the 'top' X percent (as defined in self.retain) # We will not change them, except we will update the generation new_generation = graded[:retain_length] # For the lower scoring ones, randomly keep some anyway. # This is wasteful, since we _know_ these are bad, so why keep rescoring them without modification? # At least we should mutate them for genome in graded[retain_length:]: if self.random_select > random.random(): gtc = copy.deepcopy(genome) while self.master.is_duplicate(gtc): gtc.mutate_one_gene() gtc.set_generation( self.ids.get_Gen() ) new_generation.append(gtc) self.master.add_genome(gtc) # Now find out how many spots we have left to fill. ng_length = len(new_generation) desired_length = len(pop) - ng_length children = [] # Add children, which are bred from pairs of remaining (i.e. very high or lower scoring) genomes. while len(children) < desired_length: # Get a random mom and dad, but, need to make sure they are distinct parents = random.sample(range(ng_length-1), k=2) i_male = parents[0] i_female = parents[1] male = new_generation[i_male] female = new_generation[i_female] # Recombine and mutate babies = self.breed(male, female) # the babies are guaranteed to be novel # Add the children one at a time. for baby in babies: # Don't grow larger than desired length. #if len(children) < desired_length: children.append(baby) new_generation.extend(children) return new_generation
class Evolver(): """Class that implements genetic algorithm.""" def __init__(self, all_possible_genes, retain=0.2, random_select=0.1, mutate_chance=0.3): """Create an optimizer. Args: all_possible_genes (dict): Possible genome parameters retain (float): Percentage of population to retain after each generation random_select (float): Probability of a rejected genome remaining in the population mutate_chance (float): Probability a genome will be randomly mutated """ self.all_possible_genes = all_possible_genes self.retain = retain self.random_select = random_select self.mutate_chance = mutate_chance #set the ID gen self.ids = IDgen() def create_population(self, count): """Create a population of random networks. Args: count (int): Number of networks to generate, aka the size of the population Returns: (list): Population of network objects """ pop = [] i = 0 while i < count: # Initialize a new genome. genome = Genome(self.all_possible_genes, {}, self.ids.get_next_ID(), 0, 0, self.ids.get_Gen()) # Set it to random parameters. genome.set_genes_random() if i == 0: #this is where we will store all genomes self.master = AllGenomes(genome) else: # Make sure it is unique.... while self.master.is_duplicate(genome): genome.mutate_one_gene() # Add the genome to our population. pop.append(genome) # and add to the master list if i > 0: self.master.add_genome(genome) i += 1 #self.master.print_all_genomes() #exit() return pop @staticmethod def fitness(genome): """Return the accuracy, which is our fitness function.""" return genome.accuracy def grade(self, pop): """Find average fitness for a population. Args: pop (list): The population of networks/genome Returns: (float): The average accuracy of the population """ summed = reduce(add, (self.fitness(genome) for genome in pop)) return summed / float((len(pop))) def breed(self, mom, dad): """ Make a child from two parent genes :param mom: A genome parameter :param dad: A genome parameter :return: A child gene """ child_gene = {} mom_gene = mom.geneparam dad_gene = dad.geneparam # Choose the optimizer child_gene['optimizer'] = random.choice( [mom_gene['optimizer'], dad_gene['optimizer']]) # Combine the layers max_len = max(len(mom_gene['layers']), len(dad_gene['layers'])) child_layers = [] for pos in range(max_len): from_mom = bool(random.getrandbits(1)) # Add the layer from the correct parent IF it exists. Otherwise add nothing if from_mom and len(mom_gene['layers']) > pos: child_layers.append(mom_gene['layers'][pos]) elif not from_mom and len(dad_gene['layers']) > pos: child_layers.append(dad_gene['layers'][pos]) child_gene['layers'] = child_layers child = Genome(self.all_possible_genes, child_gene, self.ids.get_next_ID(), mom.u_ID, dad.u_ID, self.ids.get_Gen()) #at this point, there is zero guarantee that the genome is actually unique # Randomly mutate one gene if self.mutate_chance > random.random(): child.mutate_one_gene() #do we have a unique child or are we just retraining one we already have anyway? while self.master.is_duplicate(child): child.mutate_one_gene() self.master.add_genome(child) return child def evolve(self, pop): """Evolve a population of genomes. Args: pop (list): A list of genome parameters Returns: (list): The evolved population of networks """ #increase generation self.ids.increase_Gen() # Get scores for each genome graded = [(self.fitness(genome), genome) for genome in pop] #and use those scores to fill in the master list for genome in pop: self.master.set_accuracy(genome) # Sort on the scores. graded = [ x[1] for x in sorted(graded, key=lambda x: x[0], reverse=True) ] # Get the number we want to keep unchanged for the next cycle. retain_length = int(len(graded) * self.retain) # In this first step, we keep the 'top' X percent (as defined in self.retain) # We will not change them, except we will update the generation new_generation = graded[:retain_length] # For the lower scoring ones, randomly keep some anyway. # This is wasteful, since we _know_ these are bad, so why keep rescoring them without modification? # At least we should mutate them for genome in graded[retain_length:]: if self.random_select > random.random(): gtc = copy.deepcopy(genome) while self.master.is_duplicate(gtc): gtc.mutate_one_gene() gtc.set_generation(self.ids.get_Gen()) new_generation.append(gtc) self.master.add_genome(gtc) # Now find out how many spots we have left to fill. ng_length = len(new_generation) print(str(ng_length)) desired_length = len(pop) - ng_length children = [] # Add children, which are bred from pairs of remaining (i.e. very high or lower scoring) genomes. while len(children) < desired_length: # Get a random mom and dad, but, need to make sure they are distinct parents = random.sample(range(ng_length - 1), k=2) i_male = parents[0] i_female = parents[1] male = new_generation[i_male] female = new_generation[i_female] baby = self.breed(male, female) children.append(baby) new_generation.extend(children) return new_generation