def helcorr(obs_long, obs_lat, obs_alt, ra2000, dec2000, jd, debug=False): """ Calculate barycentric velocity correction. This function calculates the motion of an observer in the direction of a star. In contract to :py:func:`baryvel` and :py:func:`baryCorr`, the rotation of the Earth is taken into account. .. note:: This function was ported from the REDUCE IDL package. See Piskunov & Valenti 2002, A&A 385, 1095 for a detailed description of the package and/or visit http://www.astro.uu.se/~piskunov/RESEARCH/REDUCE/ .. warning:: Contrary to the original implementation the longitude increases toward the East and the right ascension is given in degrees instead of hours. The JD is given as is, in particular, nothing needs to be subtracted. Parameters ---------- obs_long : float Longitude of observatory (degrees, **eastern** direction is positive) obs_lat : float Latitude of observatory [deg] obs_alt : float Altitude of observatory [m] ra2000 : float Right ascension of object for epoch 2000.0 [deg] dec2000 : float Declination of object for epoch 2000.0 [deg] jd : float Julian date for the middle of exposure. Returns ------- Barycentric correction : float The barycentric correction accounting for the rotation of the Earth, the rotation of the Earth's center around the Earth-Moon barycenter, and the motion of the Earth-Moon barycenter around the center of the Sun [km/s]. HJD : float Heliocentric Julian date for middle of exposure. Notes ----- :IDL REDUCE - Documentation: Calculates heliocentric Julian date, barycentric and heliocentric radial velocity corrections from: INPUT: <OBSLON> Longitude of observatory (degrees, western direction is positive) <OBSLAT> Latitude of observatory (degrees) <OBSALT> Altitude of observatory (meters) <RA2000> Right ascension of object for epoch 2000.0 (hours) <DE2000> Declination of object for epoch 2000.0 (degrees) <JD> Julian date for the middle of exposure [DEBUG=] set keyword to get additional results for debugging OUTPUT: <CORRECTION> barycentric correction - correction for rotation of earth, rotation of earth center about the earth-moon barycenter, earth-moon barycenter about the center of the Sun. <HJD> Heliocentric Julian date for middle of exposure Algorithms used are taken from the IRAF task noao.astutils.rvcorrect and some procedures of the IDL Astrolib are used as well. Accuracy is about 0.5 seconds in time and about 1 m/s in velocity. History: written by Peter Mittermayer, Nov 8,2003 2005-January-13 Kudryavtsev Made more accurate calculation of the sidereal time. Conformity with MIDAS compute/barycorr is checked. 2005-June-20 Kochukhov Included precession of RA2000 and DEC2000 to current epoch """ from PyAstronomy.pyaC import degtorad # This reverts the original longitude convention. After this, # East longitudes are positive obs_long = -obs_long if jd < 2.4e6: PE.warn(PE.PyAValError("The given Julian Date (" + str(jd) + ") is exceedingly small. Did you subtract 2.4e6?")) # Covert JD to Gregorian calendar date xjd = jd year, month, day, ut = tuple(daycnv(xjd)) # Current epoch epoch = year + month/12. + day/365. # Precess ra2000 and dec2000 to current epoch, resulting ra is in degrees ra = ra2000 dec = dec2000 ra, dec = precess(ra, dec, 2000.0, epoch) # Calculate heliocentric julian date rjd = jd-2.4e6 hjd = helio_jd(rjd, ra, dec) + 2.4e6 # DIURNAL VELOCITY (see IRAF task noao.astutil.rvcorrect) # convert geodetic latitude into geocentric latitude to correct # for rotation of earth dlat = -(11.*60.+32.743)*np.sin(2.0*degtorad(obs_lat)) \ +1.1633*np.sin(4.0*degtorad(obs_lat)) - 0.0026*np.sin(6.0*degtorad(obs_lat)) lat = obs_lat + dlat/3600.0 # Calculate distance of observer from earth center r = 6378160.0 * (0.998327073+0.001676438*np.cos(2.0*degtorad(lat)) \ -0.00000351 * np.cos(4.0*degtorad(lat)) + 0.000000008*np.cos(6.0*degtorad(lat))) \ + obs_alt # Calculate rotational velocity (perpendicular to the radius vector) in km/s # 23.934469591229 is the sidereal day in hours for 1986 v = 2.*np.pi * (r/1000.) / (23.934469591229*3600.) # Calculating local mean sidereal time (see astronomical almanach) tu = (rjd-51545.0)/36525.0 gmst = 6.697374558 + ut + \ (236.555367908*(rjd-51545.0) + 0.093104*tu**2 - 6.2e-6*tu**3)/3600.0 lmst = idlMod(gmst-obs_long/15, 24) # Projection of rotational velocity along the line of sight vdiurnal = v*np.cos(degtorad(lat))*np.cos(degtorad(dec))*np.sin(degtorad(ra-lmst*15)) # BARICENTRIC and HELIOCENTRIC VELOCITIES vh, vb = baryvel(xjd,0) # Project to line of sight vbar = vb[0]*np.cos(degtorad(dec))*np.cos(degtorad(ra)) + vb[1]*np.cos(degtorad(dec))*np.sin(degtorad(ra)) + \ vb[2]*np.sin(degtorad(dec)) vhel = vh[0]*np.cos(degtorad(dec))*np.cos(degtorad(ra)) + vh[1]*np.cos(degtorad(dec))*np.sin(degtorad(ra)) + \ vh[2]*np.sin(degtorad(dec)) # Use barycentric velocity for correction corr = (vdiurnal + vbar) if debug: print '' print '----- HELCORR.PRO - DEBUG INFO - START ----' print '(obs_long (East positive),obs_lat,obs_alt) Observatory coordinates [deg,m]: ', -obs_long, obs_lat, obs_alt print '(ra,dec) Object coordinates (for epoch 2000.0) [deg]: ', ra,dec print '(ut) Universal time (middle of exposure) [hrs]: ', ut print '(jd) Julian date (middle of exposure) (JD): ', jd print '(hjd) Heliocentric Julian date (middle of exposure) (HJD): ', hjd print '(gmst) Greenwich mean sidereal time [hrs]: ', idlMod(gmst, 24) print '(lmst) Local mean sidereal time [hrs]: ', lmst print '(dlat) Latitude correction [deg]: ', dlat print '(lat) Geocentric latitude of observer [deg]: ', lat print '(r) Distance of observer from center of earth [m]: ', r print '(v) Rotational velocity of earth at the position of the observer [km/s]: ', v print '(vdiurnal) Projected earth rotation and earth-moon revolution [km/s]: ', vdiurnal print '(vbar) Barycentric velocity [km/s]: ', vbar print '(vhel) Heliocentric velocity [km/s]: ', vhel print '(corr) Vdiurnal+vbar [km/s]: ', corr print '----- HELCORR.PRO - DEBUG INFO - END -----' print '' return corr, hjd
def baryvel(dje, deq): """ Calculate helio- and barycentric velocity. .. note:: The "JPL" option present in IDL is not provided here. Parameters ---------- dje : float Julian ephemeris date deq : float Epoch of mean equinox of helio- and barycentric velocity output. If `deq` is zero, `deq` is assumed to be equal to `dje`. Returns ------- dvelh : array Heliocentric velocity vector [km/s]. dvelb : array Barycentric velocity vector [km/s]. Notes ----- .. note:: This function was ported from the IDL Astronomy User's Library. :IDL - Documentation: pro baryvel, dje, deq, dvelh, dvelb, JPL = JPL NAME: BARYVEL PURPOSE: Calculates heliocentric and barycentric velocity components of Earth. EXPLANATION: BARYVEL takes into account the Earth-Moon motion, and is useful for radial velocity work to an accuracy of ~1 m/s. CALLING SEQUENCE: BARYVEL, dje, deq, dvelh, dvelb, [ JPL = ] INPUTS: DJE - (scalar) Julian ephemeris date. DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0 then deq is assumed to be equal to dje. OUTPUTS: DVELH: (vector(3)) heliocentric velocity component. in km/s DVELB: (vector(3)) barycentric velocity component. in km/s The 3-vectors DVELH and DVELB are given in a right-handed coordinate system with the +X axis toward the Vernal Equinox, and +Z axis toward the celestial pole. OPTIONAL KEYWORD SET: JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP to compute the Earth velocity using the full JPL ephemeris. The JPL ephemeris FITS file JPLEPH.405 must exist in either the current directory, or in the directory specified by the environment variable ASTRO_DATA. Alternatively, the JPL keyword can be set to the full path and name of the ephemeris file. A copy of the JPL ephemeris FITS file is available in http://idlastro.gsfc.nasa.gov/ftp/data/ PROCEDURES CALLED: Function PREMAT() -- computes precession matrix JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set NOTES: Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1) Stumpf claimed an accuracy of 42 cm/s for the velocity. A comparison with the JPL FORTRAN planetary ephemeris program PLEPH found agreement to within about 65 cm/s between 1986 and 1994 If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are given in the ICRS system; otherwise in the FK4 system. EXAMPLE: Compute the radial velocity of the Earth toward Altair on 15-Feb-1994 using both the original Stumpf algorithm and the JPL ephemeris IDL> jdcnv, 1994, 2, 15, 0, jd ;==> JD = 2449398.5 IDL> baryvel, jd, 2000, vh, vb ;Original algorithm ==> vh = [-17.07243, -22.81121, -9.889315] ;Heliocentric km/s ==> vb = [-17.08083, -22.80471, -9.886582] ;Barycentric km/s IDL> baryvel, jd, 2000, vh, vb, /jpl ;JPL ephemeris ==> vh = [-17.07236, -22.81126, -9.889419] ;Heliocentric km/s ==> vb = [-17.08083, -22.80484, -9.886409] ;Barycentric km/s IDL> ra = ten(19,50,46.77)*15/!RADEG ;RA in radians IDL> dec = ten(08,52,3.5)/!RADEG ;Dec in radians IDL> v = vb[0]*cos(dec)*cos(ra) + $ ;Project velocity toward star vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec) REVISION HISTORY: Jeff Valenti, U.C. Berkeley Translated BARVEL.FOR to IDL. W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994 Converted to IDL V5.0 W. Landsman September 1997 Added /JPL keyword W. Landsman July 2001 Documentation update W. Landsman Dec 2005 """ # Define constants dc2pi = 2 * np.pi cc2pi = 2 * np.pi dc1 = 1.0 dcto = 2415020.0 dcjul = 36525.0 # days in Julian year dcbes = 0.313 dctrop = 365.24219572 # days in tropical year (...572 insig) dc1900 = 1900.0 AU = 1.4959787e8 # Constants dcfel(i,k) of fast changing elements. dcfel = [1.7400353e00, 6.2833195099091e02, 5.2796e-6 \ ,6.2565836e00, 6.2830194572674e02, -2.6180e-6 \ ,4.7199666e00, 8.3997091449254e03, -1.9780e-5 \ ,1.9636505e-1, 8.4334662911720e03, -5.6044e-5 \ ,4.1547339e00, 5.2993466764997e01, 5.8845e-6 \ ,4.6524223e00, 2.1354275911213e01, 5.6797e-6 \ ,4.2620486e00, 7.5025342197656e00, 5.5317e-6 \ ,1.4740694e00, 3.8377331909193e00, 5.6093e-6 ] dcfel = np.resize(dcfel, (8,3)) # constants dceps and ccsel(i,k) of slowly changing elements. dceps = [4.093198e-1, -2.271110e-4, -2.860401e-8 ] ccsel = [1.675104e-2, -4.179579e-5, -1.260516e-7 \ ,2.220221e-1, 2.809917e-2, 1.852532e-5 \ ,1.589963e00, 3.418075e-2, 1.430200e-5 \ ,2.994089e00, 2.590824e-2, 4.155840e-6 \ ,8.155457e-1, 2.486352e-2, 6.836840e-6 \ ,1.735614e00, 1.763719e-2, 6.370440e-6 \ ,1.968564e00, 1.524020e-2, -2.517152e-6 \ ,1.282417e00, 8.703393e-3, 2.289292e-5 \ ,2.280820e00, 1.918010e-2, 4.484520e-6 \ ,4.833473e-2, 1.641773e-4, -4.654200e-7 \ ,5.589232e-2, -3.455092e-4, -7.388560e-7 \ ,4.634443e-2, -2.658234e-5, 7.757000e-8 \ ,8.997041e-3, 6.329728e-6, -1.939256e-9 \ ,2.284178e-2, -9.941590e-5, 6.787400e-8 \ ,4.350267e-2, -6.839749e-5, -2.714956e-7 \ ,1.348204e-2, 1.091504e-5, 6.903760e-7 \ ,3.106570e-2, -1.665665e-4, -1.590188e-7 ] ccsel = np.resize(ccsel, (17,3)) # Constants of the arguments of the short-period perturbations. dcargs = [5.0974222e0, -7.8604195454652e2 \ ,3.9584962e0, -5.7533848094674e2 \ ,1.6338070e0, -1.1506769618935e3 \ ,2.5487111e0, -3.9302097727326e2 \ ,4.9255514e0, -5.8849265665348e2 \ ,1.3363463e0, -5.5076098609303e2 \ ,1.6072053e0, -5.2237501616674e2 \ ,1.3629480e0, -1.1790629318198e3 \ ,5.5657014e0, -1.0977134971135e3 \ ,5.0708205e0, -1.5774000881978e2 \ ,3.9318944e0, 5.2963464780000e1 \ ,4.8989497e0, 3.9809289073258e1 \ ,1.3097446e0, 7.7540959633708e1 \ ,3.5147141e0, 7.9618578146517e1 \ ,3.5413158e0, -5.4868336758022e2 ] dcargs = np.resize(dcargs, (15,2)) # Amplitudes ccamps(n,k) of the short-period perturbations. ccamps = \ [-2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7 \ ,-3.494537e-5, 2.860401e-7, 1.289448e-7, 1.627237e-5, -1.823138e-7 \ , 6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7 \ , 1.140767e-5, -2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7 \ , 9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6, -1.864821e-7 \ , 7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7 \ ,-2.603449e-6, 7.359472e-6, 3.168357e-6, 1.119056e-6, -1.655307e-7 \ ,-3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7 \ , 3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7 \ , 8.702406e-6, -8.421214e-6, -1.372341e-6, -1.455234e-6, -4.998479e-8 \ ,-1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0 \ ,-8.043059e-6, -2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0 \ , 3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0 \ , 2.550120e-6, -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0 \ ,-6.351059e-7, 2.341650e-6, 1.061492e-6, 2.878231e-7, 0.e0 ] ccamps = np.resize(ccamps, (15,5)) # Constants csec3 and ccsec(n,k) of the secular perturbations in longitude. ccsec3 = -7.757020e-8 ccsec = [1.289600e-6, 5.550147e-1, 2.076942e00 \ ,3.102810e-5, 4.035027e00, 3.525565e-1 \ ,9.124190e-6, 9.990265e-1, 2.622706e00 \ ,9.793240e-7, 5.508259e00, 1.559103e01 ] ccsec = np.resize(ccsec, (4,3)) # Sidereal rates. dcsld = 1.990987e-7 # sidereal rate in longitude ccsgd = 1.990969e-7 # sidereal rate in mean anomaly # Constants used in the calculation of the lunar contribution. cckm = 3.122140e-5 ccmld = 2.661699e-6 ccfdi = 2.399485e-7 # Constants dcargm(i,k) of the arguments of the perturbations of the motion # of the moon. dcargm = [5.1679830e0, 8.3286911095275e3 \ ,5.4913150e0, -7.2140632838100e3 \ ,5.9598530e0, 1.5542754389685e4 ] dcargm = np.resize(dcargm, (3,2)) # Amplitudes ccampm(n,k) of the perturbations of the moon. ccampm = [ 1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7 \ ,-2.223581e-2, 5.083103e-8, 1.002548e-2, -2.291823e-8 \ , 1.148966e-2, 5.658888e-8, 8.249439e-3, 4.063015e-8 ] ccampm = np.resize(ccampm, (3,4)) # ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon) ccpamv = [8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12] dc1mme = 0.99999696e0 # Time arguments. dt = (dje - dcto) / dcjul tvec = np.array([1e0, dt, dt*dt]) # Values of all elements for the instant(aneous?) dje. temp = idlMod(np.dot(dcfel, tvec), dc2pi) dml = temp[0] forbel = temp[1:8] g = forbel[0] # old fortran equivalence deps = idlMod(np.sum(tvec*dceps), dc2pi) sorbel = idlMod(np.dot(ccsel, tvec), dc2pi) e = sorbel[0] # old fortran equivalence # Secular perturbations in longitude. dummy = np.cos(2.0) sn = np.sin(idlMod(np.dot(ccsec[::,1:3], tvec[0:2]), cc2pi)) # Periodic perturbations of the emb (earth-moon barycenter). pertl = np.sum(ccsec[::,0] * sn) + (dt * ccsec3 * sn[2]) pertld = 0.0 pertr = 0.0 pertrd = 0.0 for k in xrange(15): a = idlMod((dcargs[k,0] + dt*dcargs[k,1]), dc2pi) cosa = np.cos(a) sina = np.sin(a) pertl = pertl + ccamps[k,0]*cosa + ccamps[k,1]*sina pertr = pertr + ccamps[k,2]*cosa + ccamps[k,3]*sina if k < 11: pertld = pertld + (ccamps[k,1]*cosa-ccamps[k,0]*sina)*ccamps[k,4] pertrd = pertrd + (ccamps[k,3]*cosa-ccamps[k,2]*sina)*ccamps[k,4] # Elliptic part of the motion of the emb. phi = (e*e/4e0)*(((8e0/e)-e)*np.sin(g) +5*np.sin(2*g) +(13/3e0)*e*np.sin(3*g)) f = g + phi sinf = np.sin(f) cosf = np.cos(f) dpsi = (dc1 - e*e) / (dc1 + e*cosf) phid = 2*e*ccsgd*((1 + 1.5*e*e)*cosf + e*(1.25 - 0.5*sinf*sinf)) psid = ccsgd*e*sinf / np.sqrt(dc1 - e*e) # Perturbed heliocentric motion of the emb. d1pdro = dc1+pertr drd = d1pdro * (psid + dpsi*pertrd) drld = d1pdro*dpsi * (dcsld+phid+pertld) dtl = idlMod((dml + phi + pertl), dc2pi) dsinls = np.sin(dtl) dcosls = np.cos(dtl) dxhd = drd*dcosls - drld*dsinls dyhd = drd*dsinls + drld*dcosls # Influence of eccentricity, evection and variation on the geocentric # motion of the moon. pertl = 0.0 pertld = 0.0 pertp = 0.0 pertpd = 0.0 for k in xrange(3): a = idlMod((dcargm[k,0] + dt*dcargm[k,1]), dc2pi) sina = np.sin(a) cosa = np.cos(a) pertl = pertl + ccampm[k,0]*sina pertld = pertld + ccampm[k,1]*cosa pertp = pertp + ccampm[k,2]*cosa pertpd = pertpd - ccampm[k,3]*sina # Heliocentric motion of the earth. tl = forbel[1] + pertl sinlm = np.sin(tl) coslm = np.cos(tl) sigma = cckm / (1.0 + pertp) a = sigma*(ccmld + pertld) b = sigma*pertpd dxhd = dxhd + a*sinlm + b*coslm dyhd = dyhd - a*coslm + b*sinlm dzhd= -sigma*ccfdi*np.cos(forbel[2]) # Barycentric motion of the earth. dxbd = dxhd*dc1mme dybd = dyhd*dc1mme dzbd = dzhd*dc1mme for k in xrange(4): plon = forbel[k+3] pomg = sorbel[k+1] pecc = sorbel[k+9] tl = idlMod((plon + 2.0*pecc*np.sin(plon-pomg)), cc2pi) dxbd = dxbd + ccpamv[k]*(np.sin(tl) + pecc*np.sin(pomg)) dybd = dybd - ccpamv[k]*(np.cos(tl) + pecc*np.cos(pomg)) dzbd = dzbd - ccpamv[k]*sorbel[k+13]*np.cos(plon - sorbel[k+5]) # Transition to mean equator of date. dcosep = np.cos(deps) dsinep = np.sin(deps) dyahd = dcosep*dyhd - dsinep*dzhd dzahd = dsinep*dyhd + dcosep*dzhd dyabd = dcosep*dybd - dsinep*dzbd dzabd = dsinep*dybd + dcosep*dzbd # Epoch of mean equinox (deq) of zero implies that we should use # Julian ephemeris date (dje) as epoch of mean equinox. if deq == 0: dvelh = AU * np.array([dxhd, dyahd, dzahd]) dvelb = AU * np.array([dxbd, dyabd, dzabd]) return dvelh, dvelb # General precession from epoch dje to deq. deqdat = (dje-dcto-dcbes) / dctrop + dc1900 prema = np.transpose(premat(deqdat, deq, FK4=True)) dvelh = AU * np.dot( [dxhd, dyahd, dzahd], prema ) dvelb = AU * np.dot( [dxbd, dyabd, dzabd], prema ) return dvelh, dvelb
def sunpos(jd, end_jd=None, jd_steps=None, outfile=None, radian=False, plot=False, full_output=False): """ Compute right ascension and declination of the Sun at a given time. Parameters ---------- jd : float The Julian date end_jd : float, optional The end of the time period as Julian date. If given, `sunpos` computes RA and DEC at `jd_steps` time points between `jd` and ending at `end_jd`. jd_steps : integer, optional The number of steps between `jd` and `end_jd` for which RA and DEC are to be calculated. outfile : string, optional If given, the output will be written to a file named according to `outfile`. radian : boolean, optional Results are returned in radian instead of in degrees. Default is False. plot : boolean, optional If True, the result is plotted. full_output: boolean, optional If True, `sunpos`, additionally, returns the elongation and obliquity of the Sun. Returns ------- Time : array The JDs for which calculations where carried out. Ra : array Right ascension of the Sun. Dec : array Declination of the Sun. Elongation : array, optional Elongation of the Sun (only of `full_output` is set to True). Obliquity : array, optional Obliquity of the Sun (only of `full_output` is set to True). Notes ----- .. note:: This function was ported from the IDL Astronomy User's Library. :IDL - Documentation: NAME: SUNPOS PURPOSE: To compute the RA and Dec of the Sun at a given date. CALLING SEQUENCE: SUNPOS, jd, ra, dec, [elong, obliquity, /RADIAN ] INPUTS: jd - The Julian date of the day (and time), scalar or vector usually double precision OUTPUTS: ra - The right ascension of the sun at that date in DEGREES double precision, same number of elements as jd dec - The declination of the sun at that date in DEGREES OPTIONAL OUTPUTS: elong - Ecliptic longitude of the sun at that date in DEGREES. obliquity - the obliquity of the ecliptic, in DEGREES OPTIONAL INPUT KEYWORD: /RADIAN - If this keyword is set and non-zero, then all output variables are given in Radians rather than Degrees NOTES: Patrick Wallace (Rutherford Appleton Laboratory, UK) has tested the accuracy of a C adaptation of the sunpos.pro code and found the following results. From 1900-2100 SUNPOS gave 7.3 arcsec maximum error, 2.6 arcsec RMS. Over the shorter interval 1950-2050 the figures were 6.4 arcsec max, 2.2 arcsec RMS. The returned RA and Dec are in the given date's equinox. Procedure was extensively revised in May 1996, and the new calling sequence is incompatible with the old one. METHOD: Uses a truncated version of Newcomb's Sun. Adapted from the IDL routine SUN_POS by CD Pike, which was adapted from a FORTRAN routine by B. Emerson (RGO). EXAMPLE: (1) Find the apparent RA and Dec of the Sun on May 1, 1982 IDL> jdcnv, 1982, 5, 1,0 ,jd ;Find Julian date jd = 2445090.5 IDL> sunpos, jd, ra, dec IDL> print,adstring(ra,dec,2) 02 31 32.61 +14 54 34.9 The Astronomical Almanac gives 02 31 32.58 +14 54 34.9 so the error in SUNPOS for this case is < 0.5". (2) Find the apparent RA and Dec of the Sun for every day in 1997 IDL> jdcnv, 1997,1,1,0, jd ;Julian date on Jan 1, 1997 IDL> sunpos, jd+ dindgen(365), ra, dec ;RA and Dec for each day MODIFICATION HISTORY: Written by Michael R. Greason, STX, 28 October 1988. Accept vector arguments, W. Landsman April,1989 Eliminated negative right ascensions. MRG, Hughes STX, 6 May 1992. Rewritten using the 1993 Almanac. Keywords added. MRG, HSTX, 10 February 1994. Major rewrite, improved accuracy, always return values in degrees W. Landsman May, 1996 Added /RADIAN keyword, W. Landsman August, 1997 Converted to IDL V5.0 W. Landsman September 1997 """ if end_jd is None: # Form time in Julian centuries from 1900.0 start_jd = (jd - 2415020.0)/36525.0 # Zime array time = np.array([start_jd]) else: if jd >= end_jd: raise(PE.PyAValError("`end_jd` needs to be larger than `jd`.", \ where="sunpos", \ solution="Modify the parameters.")) if jd_steps is None: raise(PE.PyAValError("You specified `end_jd`, but no value for `jd_steps`.", \ where="sunpos", \ solution="Specify `jd_steps`, e.g., given jd_steps=10")) # Form time in Julian centuries from 1900.0 start_jd = (jd - 2415020.0)/36525.0 end_jd = (end_jd - 2415020.0)/36525.0 # Time array timestep = (end_jd-start_jd)/float(jd_steps) time = np.arange(start_jd, end_jd, timestep) # Mean solar longitude sunlon = (279.696678 + idlMod( (36000.768925*time), 360.0) )*3600.0 # Allow for ellipticity of the orbit (equation of center) # using the Earth's mean anomaly ME me = 358.475844 + idlMod( (35999.049750*time) , 360.0 ) ellcor = ( 6910.1 - 17.2*time ) * np.sin(me*np.pi/180.) + 72.3 * np.sin(2.0*me*np.pi/180.) sunlon += ellcor # Allow for the Venus perturbations using the mean anomaly of Venus MV mv = 212.603219 + idlMod( (58517.803875*time) , 360.0 ) vencorr = 4.8 * np.cos( (299.1017 + mv - me)*np.pi/180. ) + \ 5.5 * np.cos( (148.3133 + 2.0 * mv - 2.0 * me )*np.pi/180. ) + \ 2.5 * np.cos( (315.9433 + 2.0 * mv - 3.0 * me )*np.pi/180. ) + \ 1.6 * np.cos( (345.2533 + 3.0 * mv - 4.0 * me )*np.pi/180. ) + \ 1.0 * np.cos( (318.15 + 3.0 * mv - 5.0 * me )*np.pi/180. ) sunlon += vencorr # Allow for the Mars perturbations using the mean anomaly of Mars MM mm = 319.529425 + idlMod( (19139.858500*time) , 360.0 ) marscorr = 2.0 * np.cos( (343.8883 - 2.0 * mm + 2.0 * me)*np.pi/180. ) + \ 1.8 * np.cos( (200.4017 - 2.0 * mm + me)*np.pi/180. ) sunlon += marscorr # Allow for the Jupiter perturbations using the mean anomaly of Jupiter MJ mj = 225.328328 + idlMod( (3034.6920239*time) , 360.0 ) jupcorr = 7.2 * np.cos( (179.5317 - mj + me )*np.pi/180. ) + \ 2.6 * np.cos( (263.2167 - mj )*np.pi/180. ) + \ 2.7 * np.cos( ( 87.1450 - 2.0 * mj + 2.0 * me )*np.pi/180. ) + \ 1.6 * np.cos( (109.4933 - 2.0 * mj + me )*np.pi/180. ) sunlon += jupcorr # Allow for the Moon's perturbations using the mean elongation of # the Moon from the Sun D d = 350.7376814 + idlMod( (445267.11422*time) , 360.0 ) mooncorr = 6.5*np.sin(d*np.pi/180.) sunlon += mooncorr # Allow for long period terms longterm = 6.4*np.sin( (231.19 + 20.20*time)*np.pi/180. ) sunlon += longterm sunlon = idlMod( ( sunlon + 2592000.0 ) , 1296000.0 ) longmed = sunlon/3600.0 # Allow for Aberration sunlon -= 20.5 # Allow for Nutation using the longitude of the Moons mean node OMEGA omega = 259.183275 - idlMod( (1934.142008*time) , 360.0 ) sunlon = sunlon - 17.2*np.sin(omega*np.pi/180.) # Calculate the True Obliquity oblt = 23.452294 - 0.0130125*time + ( 9.2*np.cos(omega*np.pi/180.) )/3600.0 # Right Ascension and Declination sunlon /= 3600.0 ra = np.arctan2( np.sin(sunlon*np.pi/180.) * np.cos(oblt*np.pi/180.), np.cos(sunlon*np.pi/180.) ) neg = np.where(ra < 0.0)[0] nneg = len(neg) if nneg > 0: ra[neg] += 2.0*np.pi dec = np.arcsin( np.sin(sunlon*np.pi/180.) * np.sin(oblt*np.pi/180.) ) if radian: oblt *= (np.pi/180.) longmed *= (np.pi/180.) else: ra /= (np.pi/180.) dec /= (np.pi/180.) jd = time*36525.0 + 2415020.0 if outfile is not None: # Write results to a file of = open(outfile, 'w') of.write("# File created by 'sunpos'\n") if not full_output: of.write("# 1) JD, 2) ra, 3) dec\n") np.savetxt(of, np.transpose(np.vstack((jd, ra, dec)))) else: of.write("# 1) JD, 2) ra, 3) dec, 4) longitude, 5) obliquity\n") np.savetxt(of, np.transpose(np.vstack((jd, ra, dec, longmed, oblt)))) of.close() if plot: if not _ic.check["matplotlib"]: raise(PE.PyARequiredImport("Could not import matplotlib.", \ where="sunpos", \ solution=["Install matplotlib", "Switch `plot` flag to False."])) import matplotlib.pylab as plt plt.plot(jd, ra, 'k-', label="RA") plt.plot(jd, dec, 'g-', label="DEC") plt.legend() plt.show() if full_output: return jd, ra, dec, longmed, oblt else: return jd, ra, dec