Пример #1
0
    def test_sum(self):
        mass = 3.14
        position = iDynTree.Position(1, 2, 3)
        rotational_inertia = iDynTree.RotationalInertia()
        rotational_inertia[1, 1] = 1

        inertia1 = iDynTree.SpatialInertia(mass, position, rotational_inertia)

        mass = 6.28
        position = iDynTree.Position(4, 5, 6)
        rotational_inertia = iDynTree.RotationalInertia()
        rotational_inertia[2, 2] = 1

        inertia2 = iDynTree.SpatialInertia(mass, position, rotational_inertia)

        # Both inertias are expressed w.r.t. the same frame. We can sum them.
        inertia_sum = inertia1 + inertia2
        # Mass is the sum.
        self.assertAlmostEqual(inertia_sum.get_mass(),
                               inertia1.get_mass() + inertia2.get_mass())
        # The first moment of mass is the sum.
        isum_first = self._get_first_moment(inertia_sum)
        isum_first_computed = (self._get_first_moment(inertia1) +
                               self._get_first_moment(inertia2))
        for i in range(3):
            self.assertAlmostEqual(isum_first[i], isum_first_computed[i])
        # The rotational inertia is the sum.
        isum_rot = np.array(
            inertia_sum.get_rotational_inertia_wrt_frame_origin())
        isum_rot_computed = (
            np.array(inertia1.get_rotational_inertia_wrt_frame_origin()) +
            np.array(inertia2.get_rotational_inertia_wrt_frame_origin()))
        for r, c in itertools.product(range(3), range(3)):
            self.assertAlmostEqual(isum_rot[r, c], isum_rot_computed[r, c])
Пример #2
0
    def test_creation(self):
        mass = 3.14
        position = iDynTree.Position(1, 2, 3)
        rotational_inertia = iDynTree.RotationalInertia()
        rotational_inertia[1, 1] = 1

        inertia = iDynTree.SpatialInertia(mass, position, rotational_inertia)
        # Get the matrix (6x6) representation of the inertia.
        matrix = np.array(inertia.as_matrix(), copy=False)
        # The top left 3x3 matrix is a diagonal matrix with the mass on the
        # diagonal.
        for r, c in itertools.product(range(3), range(3)):
            if r == c:
                self.assertEqual(matrix[r, c], mass)
            else:
                self.assertEqual(matrix[r, c], 0)
        # The bottom right 3x3 matrix is the rotational inertia.
        for r, c in itertools.product(range(3), range(3)):
            self.assertEqual(matrix[3 + r, 3 + c], rotational_inertia[r, c])
        # The off diagonal 3x3 matrix blocks are m r^ and symmetric.
        def r_vector_item(vector, row, col):
            matrix = np.zeros((3, 3))
            matrix[0, 1] = -vector[2]
            matrix[0, 2] = vector[1]
            matrix[1, 2] = -vector[0]
            matrix[1, 0] = -matrix[0, 1]
            matrix[2, 0] = -matrix[0, 2]
            matrix[2, 1] = -matrix[1, 2]
            return matrix[row, col]

        for r, c in itertools.product(range(3), range(3)):
            r_vector = r_vector_item(position, r, c)
            self.assertEqual(matrix[3 + r, c], r_vector * mass)
            self.assertEqual(matrix[r, 3 + c], -r_vector * mass)
Пример #3
0
  def test_inertia(self):
    mass = 3.14
    position = iDynTree.Position(1, 2, 3)
    rotational_inertia = iDynTree.RotationalInertia()
    rotational_inertia[1, 1] = 1

    inertia = iDynTree.SpatialInertia(mass, position, rotational_inertia)
    link = iDynTree.Link()
    link.inertia = inertia
    self.assertEqual(link.inertia.get_mass(), mass)
Пример #4
0
    def test_sum_assignment(self):
        # We do not explicitly define this operation.
        # Check if Python does the correct thing by using the elementary + operator.
        mass = 3.14
        position = iDynTree.Position(1, 2, 3)
        rotational_inertia = iDynTree.RotationalInertia()
        rotational_inertia[1, 1] = 1

        inertia1 = iDynTree.SpatialInertia(mass, position, rotational_inertia)

        mass = 6.28
        position = iDynTree.Position(4, 5, 6)
        rotational_inertia = iDynTree.RotationalInertia()
        rotational_inertia[2, 2] = 1

        inertia_sum = iDynTree.SpatialInertia(mass, position,
                                              rotational_inertia)
        com = self._get_first_moment(inertia_sum)
        rot = inertia_sum.get_rotational_inertia_wrt_frame_origin()

        # Both inertias are expressed w.r.t. the same frame. We can sum them.
        inertia_sum += inertia1
        # Mass is the sum.
        self.assertAlmostEqual(inertia_sum.get_mass(),
                               inertia1.get_mass() + mass)
        # The first moment of mass is the sum.
        isum_first = self._get_first_moment(inertia_sum)
        isum_first_computed = self._get_first_moment(inertia1) + com
        for i in range(3):
            self.assertAlmostEqual(isum_first[i], isum_first_computed[i])
        # The rotational inertia is the sum.
        isum_rot = np.array(
            inertia_sum.get_rotational_inertia_wrt_frame_origin())
        isum_rot_computed = (
            np.array(inertia1.get_rotational_inertia_wrt_frame_origin()) + rot)
        for r, c in itertools.product(range(3), range(3)):
            self.assertAlmostEqual(isum_rot[r, c], isum_rot_computed[r, c])