def test_sum(self): mass = 3.14 position = iDynTree.Position(1, 2, 3) rotational_inertia = iDynTree.RotationalInertia() rotational_inertia[1, 1] = 1 inertia1 = iDynTree.SpatialInertia(mass, position, rotational_inertia) mass = 6.28 position = iDynTree.Position(4, 5, 6) rotational_inertia = iDynTree.RotationalInertia() rotational_inertia[2, 2] = 1 inertia2 = iDynTree.SpatialInertia(mass, position, rotational_inertia) # Both inertias are expressed w.r.t. the same frame. We can sum them. inertia_sum = inertia1 + inertia2 # Mass is the sum. self.assertAlmostEqual(inertia_sum.get_mass(), inertia1.get_mass() + inertia2.get_mass()) # The first moment of mass is the sum. isum_first = self._get_first_moment(inertia_sum) isum_first_computed = (self._get_first_moment(inertia1) + self._get_first_moment(inertia2)) for i in range(3): self.assertAlmostEqual(isum_first[i], isum_first_computed[i]) # The rotational inertia is the sum. isum_rot = np.array( inertia_sum.get_rotational_inertia_wrt_frame_origin()) isum_rot_computed = ( np.array(inertia1.get_rotational_inertia_wrt_frame_origin()) + np.array(inertia2.get_rotational_inertia_wrt_frame_origin())) for r, c in itertools.product(range(3), range(3)): self.assertAlmostEqual(isum_rot[r, c], isum_rot_computed[r, c])
def test_creation(self): mass = 3.14 position = iDynTree.Position(1, 2, 3) rotational_inertia = iDynTree.RotationalInertia() rotational_inertia[1, 1] = 1 inertia = iDynTree.SpatialInertia(mass, position, rotational_inertia) # Get the matrix (6x6) representation of the inertia. matrix = np.array(inertia.as_matrix(), copy=False) # The top left 3x3 matrix is a diagonal matrix with the mass on the # diagonal. for r, c in itertools.product(range(3), range(3)): if r == c: self.assertEqual(matrix[r, c], mass) else: self.assertEqual(matrix[r, c], 0) # The bottom right 3x3 matrix is the rotational inertia. for r, c in itertools.product(range(3), range(3)): self.assertEqual(matrix[3 + r, 3 + c], rotational_inertia[r, c]) # The off diagonal 3x3 matrix blocks are m r^ and symmetric. def r_vector_item(vector, row, col): matrix = np.zeros((3, 3)) matrix[0, 1] = -vector[2] matrix[0, 2] = vector[1] matrix[1, 2] = -vector[0] matrix[1, 0] = -matrix[0, 1] matrix[2, 0] = -matrix[0, 2] matrix[2, 1] = -matrix[1, 2] return matrix[row, col] for r, c in itertools.product(range(3), range(3)): r_vector = r_vector_item(position, r, c) self.assertEqual(matrix[3 + r, c], r_vector * mass) self.assertEqual(matrix[r, 3 + c], -r_vector * mass)
def test_inertia(self): mass = 3.14 position = iDynTree.Position(1, 2, 3) rotational_inertia = iDynTree.RotationalInertia() rotational_inertia[1, 1] = 1 inertia = iDynTree.SpatialInertia(mass, position, rotational_inertia) link = iDynTree.Link() link.inertia = inertia self.assertEqual(link.inertia.get_mass(), mass)
def test_sum_assignment(self): # We do not explicitly define this operation. # Check if Python does the correct thing by using the elementary + operator. mass = 3.14 position = iDynTree.Position(1, 2, 3) rotational_inertia = iDynTree.RotationalInertia() rotational_inertia[1, 1] = 1 inertia1 = iDynTree.SpatialInertia(mass, position, rotational_inertia) mass = 6.28 position = iDynTree.Position(4, 5, 6) rotational_inertia = iDynTree.RotationalInertia() rotational_inertia[2, 2] = 1 inertia_sum = iDynTree.SpatialInertia(mass, position, rotational_inertia) com = self._get_first_moment(inertia_sum) rot = inertia_sum.get_rotational_inertia_wrt_frame_origin() # Both inertias are expressed w.r.t. the same frame. We can sum them. inertia_sum += inertia1 # Mass is the sum. self.assertAlmostEqual(inertia_sum.get_mass(), inertia1.get_mass() + mass) # The first moment of mass is the sum. isum_first = self._get_first_moment(inertia_sum) isum_first_computed = self._get_first_moment(inertia1) + com for i in range(3): self.assertAlmostEqual(isum_first[i], isum_first_computed[i]) # The rotational inertia is the sum. isum_rot = np.array( inertia_sum.get_rotational_inertia_wrt_frame_origin()) isum_rot_computed = ( np.array(inertia1.get_rotational_inertia_wrt_frame_origin()) + rot) for r, c in itertools.product(range(3), range(3)): self.assertAlmostEqual(isum_rot[r, c], isum_rot_computed[r, c])