Пример #1
0
def test_wrong_input_shapes():
    m = CanberraMetric()

    with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
        m.update((torch.rand(4), torch.rand(4, 1)))

    with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
        m.update((torch.rand(4, 1), torch.rand(4)))
    def _test(metric_device):
        metric_device = torch.device(metric_device)
        m = CanberraMetric(device=metric_device)
        torch.manual_seed(10 + rank)

        y_pred = torch.randint(0, 10, size=(10, ), device=device).float()
        y = torch.randint(0, 10, size=(10, ), device=device).float()

        m.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y_pred = y_pred.cpu().numpy()
        np_y = y.cpu().numpy()
        res = m.compute()
        assert canberra.pairwise([np_y_pred, np_y])[0][1] == pytest.approx(res)
def test_wrong_input_shapes():
    m = CanberraMetric()

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1, 2), torch.rand(4, )))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, ), torch.rand(4, 1, 2)))
def test_compute():
    a = np.random.randn(4)
    b = np.random.randn(4)
    c = np.random.randn(4)
    d = np.random.randn(4)
    ground_truth = np.random.randn(4)

    m = CanberraMetric()

    canberra = DistanceMetric.get_metric("canberra")

    m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
    np_sum = (np.abs(ground_truth - a) /
              (np.abs(a) + np.abs(ground_truth))).sum()
    assert m.compute() == pytest.approx(np_sum)
    assert canberra.pairwise([a, ground_truth])[0][1] == pytest.approx(np_sum)

    m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))
    np_sum += ((np.abs(ground_truth - b)) /
               (np.abs(b) + np.abs(ground_truth))).sum()
    assert m.compute() == pytest.approx(np_sum)
    v1 = np.hstack([a, b])
    v2 = np.hstack([ground_truth, ground_truth])
    assert canberra.pairwise([v1, v2])[0][1] == pytest.approx(np_sum)

    m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))
    np_sum += ((np.abs(ground_truth - c)) /
               (np.abs(c) + np.abs(ground_truth))).sum()
    assert m.compute() == pytest.approx(np_sum)
    v1 = np.hstack([v1, c])
    v2 = np.hstack([v2, ground_truth])
    assert canberra.pairwise([v1, v2])[0][1] == pytest.approx(np_sum)

    m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))
    np_sum += (np.abs(ground_truth - d) /
               (np.abs(d) + np.abs(ground_truth))).sum()
    assert m.compute() == pytest.approx(np_sum)
    v1 = np.hstack([v1, d])
    v2 = np.hstack([v2, ground_truth])
    assert canberra.pairwise([v1, v2])[0][1] == pytest.approx(np_sum)
Пример #5
0
def test_compute():
    a = np.random.randn(4)
    b = np.random.randn(4)
    c = np.random.randn(4)
    d = np.random.randn(4)
    ground_truth = np.random.randn(4)

    m = CanberraMetric()

    m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
    np_sum = (np.abs(ground_truth - a) / (a + ground_truth)).sum()
    assert m.compute() == pytest.approx(np_sum)

    m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))
    np_sum += ((np.abs(ground_truth - b)) / (b + ground_truth)).sum()
    assert m.compute() == pytest.approx(np_sum)

    m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))
    np_sum += ((np.abs(ground_truth - c)) / (c + ground_truth)).sum()
    assert m.compute() == pytest.approx(np_sum)

    m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))
    np_sum += (np.abs(ground_truth - d) / (d + ground_truth)).sum()
    assert m.compute() == pytest.approx(np_sum)
def test_error_is_not_nan():
    m = CanberraMetric()
    m.update((torch.zeros(4), torch.zeros(4)))
    assert not (torch.isnan(m._sum_of_errors).any()
                or torch.isinf(m._sum_of_errors).any()), m._sum_of_errors