Пример #1
0
def test_wrong_input_shapes():
    m = FractionalBias()

    with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
        m.update((torch.rand(4), torch.rand(4, 1)))

    with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
        m.update((torch.rand(4, 1), torch.rand(4,)))
Пример #2
0
def test_fractional_bias():
    a = np.random.randn(4)
    b = np.random.randn(4)
    c = np.random.randn(4)
    d = np.random.randn(4)
    ground_truth = np.random.randn(4)

    m = FractionalBias()

    m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
    np_sum = (2 * (ground_truth - a) / (a + ground_truth)).sum()
    np_len = len(a)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))
    np_sum += (2 * (ground_truth - b) / (b + ground_truth)).sum()
    np_len += len(b)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))
    np_sum += (2 * (ground_truth - c) / (c + ground_truth)).sum()
    np_len += len(c)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))
    np_sum += (2 * (ground_truth - d) / (d + ground_truth)).sum()
    np_len += len(d)
    np_ans = np_sum / np_len
    assert m.compute() == pytest.approx(np_ans)
Пример #3
0
def test_wrong_input_shapes():
    m = FractionalBias()

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4, 1, 2), torch.rand(4,)))

    with pytest.raises(ValueError):
        m.update((torch.rand(4,), torch.rand(4, 1, 2)))
Пример #4
0
    def _test(metric_device):
        metric_device = torch.device(metric_device)
        m = FractionalBias(device=metric_device)
        torch.manual_seed(10 + rank)

        y_pred = torch.randint(0, 10, size=(10,), device=device).float()
        y = torch.randint(0, 10, size=(10,), device=device).float()

        m.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y_pred = y_pred.cpu().numpy()
        np_y = y.cpu().numpy()

        res = m.compute()

        np_sum = (2 * (np_y - np_y_pred) / (np_y_pred + np_y + 1e-30)).sum()
        np_len = len(y_pred)
        np_ans = np_sum / np_len

        assert np_ans == pytest.approx(res, rel=tol)
Пример #5
0
def test_error_is_not_nan():
    m = FractionalBias()
    m.update((torch.zeros(4), torch.zeros(4)))
    assert not (torch.isnan(m._sum_of_errors).any() or torch.isinf(m._sum_of_errors).any()), m._sum_of_errors