Пример #1
0
def test_integration_roc_curve_with_activated_output_transform():
    np.random.seed(1)
    size = 100
    np_y_pred = np.random.rand(size, 1)
    np_y_pred_sigmoid = torch.sigmoid(torch.from_numpy(np_y_pred)).numpy()
    np_y = np.zeros((size,), dtype=np.long)
    np_y[size // 2:] = 1
    np.random.shuffle(np_y)

    sk_fpr, sk_tpr, sk_thresholds = roc_curve(np_y, np_y_pred_sigmoid)

    batch_size = 10

    def update_fn(engine, batch):
        idx = (engine.state.iteration - 1) * batch_size
        y_true_batch = np_y[idx: idx + batch_size]
        y_pred_batch = np_y_pred[idx: idx + batch_size]
        return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)

    engine = Engine(update_fn)

    roc_curve_metric = RocCurve(output_transform=lambda x: (torch.sigmoid(x[1]), x[2]))
    roc_curve_metric.attach(engine, "roc_curve")

    data = list(range(size // batch_size))
    fpr, tpr, thresholds = engine.run(data, max_epochs=1).metrics["roc_curve"]

    assert np.array_equal(fpr, sk_fpr)
    assert np.array_equal(tpr, sk_tpr)
    # assert thresholds almost equal, due to numpy->torch->numpy conversion
    np.testing.assert_array_almost_equal(thresholds, sk_thresholds)
Пример #2
0
def test_check_compute_fn():
    y_pred = torch.zeros((8, 13))
    y_pred[:, 1] = 1
    y_true = torch.zeros_like(y_pred)
    output = (y_pred, y_true)

    em = RocCurve(check_compute_fn=True)

    em.reset()
    with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"):
        em.update(output)

    em = RocCurve(check_compute_fn=False)
    em.update(output)
Пример #3
0
def test_roc_curve():
    size = 100
    np_y_pred = np.random.rand(size, 1)
    np_y = np.zeros((size,), dtype=np.long)
    np_y[size // 2:] = 1
    sk_fpr, sk_tpr, sk_thresholds = roc_curve(np_y, np_y_pred)

    roc_curve_metric = RocCurve()
    y_pred = torch.from_numpy(np_y_pred)
    y = torch.from_numpy(np_y)

    roc_curve_metric.update((y_pred, y))
    fpr, tpr, thresholds = roc_curve_metric.compute()

    assert np.array_equal(fpr, sk_fpr)
    assert np.array_equal(tpr, sk_tpr)
    # assert thresholds almost equal, due to numpy->torch->numpy conversion
    np.testing.assert_array_almost_equal(thresholds, sk_thresholds)
Пример #4
0
def test_no_sklearn(mock_no_sklearn):
    with pytest.raises(RuntimeError, match=r"This contrib module requires sklearn to be installed"):
        RocCurve()