Пример #1
0
    def predict(self, src_image):
        param = self.getParam()

        # Initialize
        init_logging()
        half = self.device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        if self.model is None or param.update:
            self.model = attempt_load(param.model_path, map_location=self.device)  # load FP32 model
            stride = int(self.model.stride.max())  # model stride
            param.input_size = check_img_size(param.input_size, s=stride)  # check img_size
            if half:
                self.model.half()  # to FP16F

            # Get names and colors
            self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
            self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
            param.update = False
        else:
            stride = int(self.model.stride.max())  # model stride

        # Resize image
        image = letterbox(src_image, param.input_size, stride)[0]
        image = image.transpose(2, 0, 1)
        image = np.ascontiguousarray(image)
        self.emitStepProgress()

        # Run inference
        image = torch.from_numpy(image).to(self.device)
        image = image.half() if half else image.float()  # uint8 to fp16/32
        image /= 255.0  # 0 - 255 to 0.0 - 1.0
        if image.ndimension() == 3:
            image = image.unsqueeze(0)

        self.emitStepProgress()

        # Inference
        pred = self.model(image, augment=param.augment)[0]
        self.emitStepProgress()

        # Apply NMS
        pred = non_max_suppression(pred, param.conf_thres, param.iou_thres, agnostic=param.agnostic_nms)
        self.emitStepProgress()

        graphics_output = self.getOutput(1)
        graphics_output.setNewLayer("YoloV5")
        graphics_output.setImageIndex(0)

        detected_names = []
        detected_conf = []

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(image.shape[2:], det[:, :4], src_image.shape).round()

                # Results
                for *xyxy, conf, cls in reversed(det):
                    # Box
                    w = float(xyxy[2] - xyxy[0])
                    h = float(xyxy[3] - xyxy[1])
                    prop_rect = core.GraphicsRectProperty()
                    prop_rect.pen_color = self.colors[int(cls)]
                    graphics_box = graphics_output.addRectangle(float(xyxy[0]), float(xyxy[1]), w, h, prop_rect)
                    graphics_box.setCategory(self.names[int(cls)])
                    # Label
                    name = self.names[int(cls)]
                    prop_text = core.GraphicsTextProperty()
                    prop_text.font_size = 8
                    prop_text.color = self.colors[int(cls)]
                    graphics_output.addText(name, float(xyxy[0]), float(xyxy[1]), prop_text)
                    detected_names.append(name)
                    detected_conf.append(conf.item())

        # Init numeric output
        numeric_ouput = self.getOutput(2)
        numeric_ouput.clearData()
        numeric_ouput.setOutputType(dataprocess.NumericOutputType.TABLE)
        numeric_ouput.addValueList(detected_conf, "Confidence", detected_names)
        self.emitStepProgress()
    def run(self):
        self.beginTaskRun()

        # we use seed to keep the same color for our masks + boxes + labels (same random each time)
        random.seed(30)

        # Get input :
        input = self.getInput(0)
        srcImage = input.getImage()

        # Get output :
        output_image = self.getOutput(0)
        output_graph = self.getOutput(1)
        output_graph.setNewLayer("Detectron2_RetinaNet")

        # Get parameters :
        param = self.getParam()

        # predictor
        if not self.loaded:
            print("Chargement du modèle")
            if param.cuda == False:
                self.cfg.MODEL.DEVICE = "cpu"
                self.deviceFrom = "cpu"
            else:
                self.deviceFrom = "gpu"
            self.loaded = True
            self.predictor = DefaultPredictor(self.cfg)
        # reload model if CUDA check and load without CUDA
        elif self.deviceFrom == "cpu" and param.cuda == True:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.LINK_MODEL))  # load config from file(.yaml)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.LINK_MODEL)  # download the model (.pkl)
            self.deviceFrom = "gpu"
            self.predictor = DefaultPredictor(self.cfg)
        # reload model if CUDA not check and load with CUDA
        elif self.deviceFrom == "gpu" and param.cuda == False:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.MODEL.DEVICE = "cpu"
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.LINK_MODEL))  # load config from file(.yaml)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.LINK_MODEL)  # download the model (.pkl)
            self.deviceFrom = "cpu"
            self.predictor = DefaultPredictor(self.cfg)

        outputs = self.predictor(srcImage)

        # get outputs instances
        output_image.setImage(srcImage)
        boxes = outputs["instances"].pred_boxes
        scores = outputs["instances"].scores
        classes = outputs["instances"].pred_classes

        # to numpy
        if param.cuda:
            boxes_np = boxes.tensor.cpu().numpy()
            scores_np = scores.cpu().numpy()
            classes_np = classes.cpu().numpy()
        else:
            boxes_np = boxes.tensor.numpy()
            scores_np = scores.numpy()
            classes_np = classes.numpy()

        self.emitStepProgress()

        # keep only the results with proba > threshold
        scores_np_tresh = list()
        for s in scores_np:
            if float(s) > param.proba:
                scores_np_tresh.append(s)

        if len(scores_np_tresh) > 0:
            # text label with score
            labels = None
            class_names = MetadataCatalog.get(
                self.cfg.DATASETS.TRAIN[0]).get("thing_classes")
            if classes is not None and class_names is not None and len(
                    class_names) > 1:
                labels = [class_names[i] for i in classes]
            if scores_np_tresh is not None:
                if labels is None:
                    labels = [
                        "{:.0f}%".format(s * 100) for s in scores_np_tresh
                    ]
                else:
                    labels = [
                        "{} {:.0f}%".format(l, s * 100)
                        for l, s in zip(labels, scores_np_tresh)
                    ]

            # Show Boxes + labels
            for i in range(len(scores_np_tresh)):
                color = [
                    random.randint(0, 255),
                    random.randint(0, 255),
                    random.randint(0, 255), 255
                ]
                prop_text = core.GraphicsTextProperty()
                prop_text.color = color
                prop_text.font_size = 7
                output_graph.addText(labels[i], float(boxes_np[i][0]),
                                     float(boxes_np[i][1]), prop_text)
                prop_rect = core.GraphicsRectProperty()
                prop_rect.pen_color = color
                prop_rect.category = labels[i]
                output_graph.addRectangle(
                    float(boxes_np[i][0]), float(boxes_np[i][1]),
                    float(boxes_np[i][2] - boxes_np[i][0]),
                    float(boxes_np[i][3] - boxes_np[i][1]), prop_rect)

        # Step progress bar:
        self.emitStepProgress()

        # Call endTaskRun to finalize process
        self.endTaskRun()
    def run(self):
        self.beginTaskRun()
        
        # Get input :
        input = self.getInput(0)

        # Get output :
        output = self.getOutput(0)
        output_graph = self.getOutput(1)
        output_graph.setNewLayer("DensePose")
        srcImage = input.getImage()

        # Get parameters :
        param = self.getParam()

        # predictor
        if not self.loaded:
            print("Chargement du modèle")
            if param.cuda == False:
                self.cfg.MODEL.DEVICE = "cpu"
                self.deviceFrom = "cpu"
            else:
                self.deviceFrom = "gpu"
            self.loaded = True
            self.predictor = DefaultPredictor(self.cfg)
        # reload model if CUDA check and load without CUDA 
        elif self.deviceFrom == "cpu" and param.cuda == True:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            add_densepose_config(self.cfg)
            self.cfg.merge_from_file(self.folder + "/DensePose_git/configs/"+self.MODEL_NAME_CONFIG+".yaml") 
            self.cfg.MODEL.WEIGHTS = self.folder + "/models/"+self.MODEL_NAME+".pkl"   
            self.deviceFrom = "gpu"
            self.predictor = DefaultPredictor(self.cfg)
        # reload model if CUDA not check and load with CUDA
        elif self.deviceFrom == "gpu" and param.cuda == False:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.DEVICE = "cpu"
            add_densepose_config(self.cfg)
            self.cfg.merge_from_file(self.folder + "/DensePose_git/configs/"+self.MODEL_NAME_CONFIG+".yaml") 
            self.cfg.MODEL.WEIGHTS = self.folder + "/models/"+self.MODEL_NAME+".pkl"   
            self.deviceFrom = "cpu"
            self.predictor = DefaultPredictor(self.cfg)

        outputs = self.predictor(srcImage)["instances"]
        scores = outputs.get("scores").cpu()
        boxes_XYXY = outputs.get("pred_boxes").tensor.cpu()
        boxes_XYWH = BoxMode.convert(boxes_XYXY, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
        denseposes = outputs.get("pred_densepose").to_result(boxes_XYWH)
        
        # Number of iso values betwen 0 and 1
        self.levels = np.linspace(0, 1, 9)
        cmap = cv2.COLORMAP_PARULA
        img_colors_bgr = cv2.applyColorMap((self.levels * 255).astype(np.uint8), cmap)
        self.level_colors_bgr = [
            [int(v) for v in img_color_bgr.ravel()] for img_color_bgr in img_colors_bgr
        ]

        # text and rect graph properties
        properties_text = core.GraphicsTextProperty()
        properties_text.color = [255,255,255]
        properties_text.font_size = 10
        properties_rect = core.GraphicsRectProperty()
        properties_rect.pen_color = [11,130,41]
        properties_line = core.GraphicsPolylineProperty()
        properties_line.line_size = 1
        self.emitStepProgress()
        
        for i in range(len(denseposes)):
            if scores.numpy()[i] > param.proba:
                bbox_xywh = boxes_XYWH[i]
                bbox_xyxy = boxes_XYXY[i]
                result_encoded = denseposes.results[i]
                iuv_arr = DensePoseResult.decode_png_data(*result_encoded)
                # without indice surface
                self.visualize_iuv_arr(srcImage, iuv_arr, bbox_xywh, properties_line, output_graph)
                # with indice surface
                #self.visualize_iuv_arr_indiceSurface(srcImage, iuv_arr, bbox_xyxy, output_graph)
                output_graph.addRectangle(bbox_xyxy[0].item(), bbox_xyxy[1].item(), bbox_xyxy[2].item() - bbox_xyxy[0].item(), bbox_xyxy[3].item() -  bbox_xyxy[1].item(),properties_rect)
                output_graph.addText(str(scores[i].item())[:5], float(bbox_xyxy[0].item()), float(bbox_xyxy[1].item()), properties_text)
       
        output.setImage(srcImage)
        self.emitStepProgress()
        self.endTaskRun()
    def run(self):

        self.beginTaskRun()

        # we use seed to keep the same color for our boxes + labels (same random each time)
        random.seed(30)

        # Get input :
        input = self.getInput(0)
        srcImage = input.getImage()

        # Get output :
        output_graph = self.getOutput(1)
        output_graph.setNewLayer("KeypointRCNN")

        # Get parameters :
        param = self.getParam()

        # predictor
        if not self.loaded:
            print("Chargement du modèle")
            if param.cuda == False:
                self.cfg.MODEL.DEVICE = "cpu"
                self.deviceFrom = "cpu"
            else:
                self.deviceFrom = "gpu"
            self.predictor = DefaultPredictor(self.cfg)
            self.loaded = True
        # reload model if CUDA check and load without CUDA
        elif self.deviceFrom == "cpu" and param.cuda == True:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.LINK_MODEL))  # load config from file(.yaml)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.LINK_MODEL)  # download the model (.pkl)
            self.predictor = DefaultPredictor(self.cfg)
            self.deviceFrom = "gpu"
        # reload model if CUDA not check and load with CUDA
        elif self.deviceFrom == "gpu" and param.cuda == False:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.DEVICE = "cpu"
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.LINK_MODEL))  # load config from file(.yaml)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.LINK_MODEL)  # download the model (.pkl)
            self.predictor = DefaultPredictor(self.cfg)
            self.deviceFrom = "cpu"

        outputs = self.predictor(srcImage)

        # get outputs instances
        boxes = outputs["instances"].pred_boxes
        scores = outputs["instances"].scores
        classes = outputs["instances"].pred_classes
        keypoints = outputs["instances"].pred_keypoints

        # to numpy
        if param.cuda:
            boxes_np = boxes.tensor.cpu().numpy()
            scores_np = scores.cpu().numpy()
            classes_np = classes.cpu().numpy()
            keypoints_np = keypoints.cpu().numpy()
        else:
            boxes_np = boxes.tensor.numpy()
            scores_np = scores.numpy()
            classes_np = classes.numpy()
            keypoints_np = keypoints.numpy()

        self.emitStepProgress()

        # keep only the results with proba > threshold
        scores_np_tresh = list()
        for s in scores_np:
            if float(s) > param.proba:
                scores_np_tresh.append(s)

        if len(scores_np_tresh) > 0:
            # create random color for boxes and labels
            colors = []
            for i in range(len(scores_np_tresh)):
                colors.append([
                    random.randint(0, 255),
                    random.randint(0, 255),
                    random.randint(0, 255), 255
                ])

            # text label with score
            labels = None
            class_names = MetadataCatalog.get(
                self.cfg.DATASETS.TRAIN[0]).get("thing_classes")
            if classes is not None and class_names is not None and len(
                    class_names) > 1:
                labels = [class_names[i] for i in classes]
            if scores_np_tresh is not None:
                if labels is None:
                    labels = [
                        "{:.0f}%".format(s * 100) for s in scores_np_tresh
                    ]
                else:
                    labels = [
                        "{} {:.0f}%".format(l, s * 100)
                        for l, s in zip(labels, scores_np_tresh)
                    ]

            # Show boxes + labels
            for i in range(len(scores_np_tresh)):
                properties_text = core.GraphicsTextProperty()
                properties_text.color = colors[
                    i]  # start with i+1 we don't use the first color dedicated for the label mask
                properties_text.font_size = 7
                properties_rect = core.GraphicsRectProperty()
                properties_rect.pen_color = colors[i]
                output_graph.addRectangle(
                    float(boxes_np[i][0]), float(boxes_np[i][1]),
                    float(boxes_np[i][2] - boxes_np[i][0]),
                    float(boxes_np[i][3] - boxes_np[i][1]), properties_rect)
                output_graph.addText(labels[i], float(boxes_np[i][0]),
                                     float(boxes_np[i][1]), properties_text)

            self.emitStepProgress()

            # keypoints
            properties_point = core.GraphicsPointProperty()
            properties_point.pen_color = [0, 0, 0, 255]
            properties_point.brush_color = [0, 0, 255, 255]
            properties_point.size = 10

            # get keypoints name if prob > Threshold
            keypoint_names = MetadataCatalog.get(
                self.cfg.DATASETS.TRAIN[0]).get("keypoint_names")
            for keypoints_obj in keypoints_np[:len(scores_np_tresh)]:
                visible_keypoints = {}
                for idx, kp in enumerate(keypoints_obj):
                    x, y, prob = kp
                    if prob > self._KEYPOINT_THRESHOLD:
                        pts = core.CPointF(float(x), float(y))
                        output_graph.addPoint(pts, properties_point)
                        if keypoint_names:
                            keypoint_name = keypoint_names[idx]
                            visible_keypoints[keypoint_name] = (x, y)

                # keypoints connections
                if MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]).get(
                        "keypoint_connection_rules"):
                    for kpName_0, kpName_1, color in MetadataCatalog.get(
                            self.cfg.DATASETS.TRAIN[0]).get(
                                "keypoint_connection_rules"):
                        for kpName_0, kpName_1, color in MetadataCatalog.get(
                                self.cfg.DATASETS.TRAIN[0]).get(
                                    "keypoint_connection_rules"):
                            if kpName_0 in visible_keypoints and kpName_1 in visible_keypoints:
                                x0, y0 = visible_keypoints[kpName_0]
                                x1, y1 = visible_keypoints[kpName_1]
                                color = [x for x in color]
                                color.append(255)
                                properties_line = core.GraphicsPolylineProperty(
                                )
                                properties_line.pen_color = color
                                pts0 = core.CPointF(float(x0), float(y0))
                                pts1 = core.CPointF(float(x1), float(y1))
                                lst_points = [pts0, pts1]
                                output_graph.addPolyline(
                                    lst_points, properties_line)
        else:
            self.emitStepProgress()

        # Set input image to output 0
        self.forwardInputImage(0, 0)

        # Step progress bar:
        self.emitStepProgress()

        # Call endTaskRun to finalize process
        self.endTaskRun()
    def run(self):
        self.beginTaskRun()

        # we use seed to keep the same color for our masks + boxes + labels (same random each time)
        random.seed(30)

        # Get input :
        img_input = self.getInput(0)
        src_img = img_input.getImage()

        # Get output :
        mask_output = self.getOutput(0)
        output_graph = self.getOutput(2)
        output_graph.setImageIndex(1)
        output_graph.setNewLayer("MaskRCNN")

        # Get parameters :
        param = self.getParam()

        # predictor
        if not self.predictor or param.update_model:
            if param.dataset == "COCO":
                self.model_link = "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"
            else:
                self.model_link = "Cityscapes/mask_rcnn_R_50_FPN.yaml"

            self.cfg = get_cfg()
            self.cfg.MODEL.DEVICE = param.device
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            # load config from file(.yaml)
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.model_link))
            # download the model (.pkl)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.model_link)
            self.predictor = DefaultPredictor(self.cfg)
            param.update_model = False

        outputs = self.predictor(src_img)

        # get outputs instances
        boxes = outputs["instances"].pred_boxes
        scores = outputs["instances"].scores
        classes = outputs["instances"].pred_classes
        masks = outputs["instances"].pred_masks

        # to numpy
        boxes_np = boxes.tensor.cpu().numpy()
        scores_np = scores.cpu().numpy()
        # classes_np = classes.cpu().numpy()

        self.emitStepProgress()

        # keep only the results with proba > threshold
        scores_np_thresh = list()
        for s in scores_np:
            if float(s) > param.proba:
                scores_np_thresh.append(s)

        if len(scores_np_thresh) > 0:
            # create random color for masks + boxes + labels
            colors = [[0, 0, 0]]
            for i in range(len(scores_np_thresh)):
                colors.append([
                    random.randint(0, 255),
                    random.randint(0, 255),
                    random.randint(0, 255), 255
                ])

            # text labels with scores
            labels = None
            class_names = MetadataCatalog.get(
                self.cfg.DATASETS.TRAIN[0]).get("thing_classes")

            if classes is not None and class_names is not None and len(
                    class_names) > 1:
                labels = [class_names[i] for i in classes]

            if scores_np_thresh is not None:
                if labels is None:
                    labels = [
                        "{:.0f}%".format(s * 100) for s in scores_np_thresh
                    ]
                else:
                    labels = [
                        "{} {:.0f}%".format(l, s * 100)
                        for l, s in zip(labels, scores_np_thresh)
                    ]

            # Show boxes + labels
            for i in range(len(scores_np_thresh)):
                prop_text = core.GraphicsTextProperty()
                # start with i+1 we don't use the first color dedicated for the label mask
                prop_text.color = colors[i + 1]
                prop_text.font_size = 7
                prop_rect = core.GraphicsRectProperty()
                prop_rect.pen_color = colors[i + 1]
                prop_rect.category = labels[i]
                output_graph.addRectangle(
                    float(boxes_np[i][0]), float(boxes_np[i][1]),
                    float(boxes_np[i][2] - boxes_np[i][0]),
                    float(boxes_np[i][3] - boxes_np[i][1]), prop_rect)
                output_graph.addText(labels[i], float(boxes_np[i][0]),
                                     float(boxes_np[i][1]), prop_text)

            self.emitStepProgress()

            # label mask
            nb_objects = len(masks[:len(scores_np_thresh)])
            if nb_objects > 0:
                masks = masks[:nb_objects, :, :, None]
                mask_or = masks[0] * nb_objects
                for j in range(1, nb_objects):
                    mask_or = torch.max(mask_or, masks[j] * (nb_objects - j))
                mask_numpy = mask_or.byte().cpu().numpy()
                mask_output.setImage(mask_numpy)

                # output mask apply to our original image
                # inverse colors to match boxes colors
                c = colors[1:]
                c = c[::-1]
                colors = [[0, 0, 0]]
                for col in c:
                    colors.append(col)

                self.setOutputColorMap(1, 0, colors)
        else:
            self.emitStepProgress()

        self.forwardInputImage(0, 1)

        # Step progress bar:
        self.emitStepProgress()

        # Call endTaskRun to finalize process
        self.endTaskRun()
Пример #6
0
    def run(self):
        self.beginTaskRun()

        # we use seed to keep the same color for our masks + boxes + labels (same random each time)
        random.seed(30)

        # Get input :
        input = self.getInput(0)
        srcImage = input.getImage()

        # Get output :
        output_graph = self.getOutput(2)
        output_graph.setImageIndex(1)
        output_graph.setNewLayer("PanopticSegmentation")

        # Get parameters :
        param = self.getParam()

        # predictor
        if not self.loaded:
            print("Chargement du modèle")
            if param.cuda == False:
                self.cfg.MODEL.DEVICE = "cpu"
                self.deviceFrom = "cpu"
            else:
                self.deviceFrom = "gpu"
            self.predictor = DefaultPredictor(self.cfg)
            self.loaded = True
        # reload model if CUDA check and load without CUDA
        elif self.deviceFrom == "cpu" and param.cuda == True:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.LINK_MODEL))  # load config from file(.yaml)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.LINK_MODEL)  # download the model (.pkl)
            self.predictor = DefaultPredictor(self.cfg)
            self.deviceFrom = "gpu"
        # reload model if CUDA not check and load with CUDA
        elif self.deviceFrom == "gpu" and param.cuda == False:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            self.cfg.MODEL.DEVICE = "cpu"
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(model_zoo.get_config_file(
                self.LINK_MODEL))  # load config from file(.yaml)
            self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
                self.LINK_MODEL)  # download the model (.pkl)
            self.predictor = DefaultPredictor(self.cfg)
            self.deviceFrom = "cpu"

        outputs = self.predictor(srcImage)["panoptic_seg"]

        # get outputs of model
        mask = outputs[0]
        infos = outputs[1]

        # set mask output
        mask_output = self.getOutput(0)
        if param.cuda:
            mask_output.setImage(mask.cpu().numpy())
        else:
            mask_output.setImage(mask.numpy())

        self.emitStepProgress()

        # output visualisation
        nb_objects = len(infos)

        # create random color for masks + boxes + labels
        colors = [[0, 0, 0]]
        for i in range(nb_objects):
            colors.append([
                random.randint(0, 255),
                random.randint(0, 255),
                random.randint(0, 255), 255
            ])

        # get infos classes
        scores = list()
        classesThings = list()
        classesStuffs = list()
        labelsStuffs = list()

        for info in infos:
            if info["isthing"]:
                scores.append(info['score'])
                classesThings.append(info['category_id'])
            else:
                classesStuffs.append(info['category_id'])

        # text label with score - get classe name for thing and stuff from metedata
        labelsThings = None
        class_names = MetadataCatalog.get(
            self.cfg.DATASETS.TRAIN[0]).get("thing_classes")
        if classesThings is not None and class_names is not None and len(
                class_names) > 1:
            labelsThings = [class_names[i] for i in classesThings]
        if scores is not None:
            if labelsThings is None:
                labelsThings = ["{:.0f}%".format(s * 100) for s in scores]
            else:
                labelsThings = [
                    "{} {:.0f}%".format(l, s * 100)
                    for l, s in zip(labelsThings, scores)
                ]
        class_names_stuff = MetadataCatalog.get(
            self.cfg.DATASETS.TRAIN[0]).get("stuff_classes")
        [labelsStuffs.append(class_names_stuff[x]) for x in classesStuffs]
        labels = labelsThings + labelsStuffs
        seg_ids = torch.unique(mask).tolist()

        self.emitStepProgress()

        # create masks - use for text_pos
        masks = list()
        for sid in seg_ids:
            if param.cuda:
                mymask = (mask == sid).cpu().numpy().astype(np.bool)
            else:
                mymask = (mask == sid).numpy().astype(np.bool)
            masks.append(mymask)

        # text pos = median of mask - median is less sensitive to outliers.
        if len(masks) > len(
                labels
        ):  # unrecognized area - no given class for area labeled 0
            for i in range(nb_objects):
                properties_text = core.GraphicsTextProperty()
                properties_text.color = colors[i + 1]
                properties_text.font_size = 7
                text_pos = np.median(masks[i + 1].nonzero(), axis=1)[::-1]
                output_graph.addText(labels[i], text_pos[0], text_pos[1],
                                     properties_text)
        else:
            for i in range(nb_objects):
                properties_text = core.GraphicsTextProperty()
                properties_text.color = colors[i + 1]
                properties_text.font_size = 7
                text_pos = np.median(masks[i].nonzero(), axis=1)[::-1]
                output_graph.addText(labels[i], text_pos[0], text_pos[1],
                                     properties_text)

        # output mask apply to our original image
        self.setOutputColorMap(1, 0, colors)
        self.forwardInputImage(0, 1)

        # Step progress bar:
        self.emitStepProgress()

        # Call endTaskRun to finalize process
        self.endTaskRun()
Пример #7
0
    def run(self):
        self.beginTaskRun()

        # we use seed to keep the same color for our masks + boxes + labels (same random each time)
        random.seed(30)

        # Get input :
        input = self.getInput(0)
        srcImage = input.getImage()

        # Get output :
        mask_output = self.getOutput(0)
        output_graph = self.getOutput(2)
        output_graph.setImageIndex(1)
        output_graph.setNewLayer("PointRend")

        # Get parameters :
        param = self.getParam()

        # predictor
        if not self.loaded:
            print("Chargement du modèle")
            if param.cuda == False:
                self.cfg.MODEL.DEVICE = "cpu"
                self.deviceFrom = "cpu"
            else:
                self.deviceFrom = "gpu"
            self.loaded = True
            self.predictor = DefaultPredictor(self.cfg)
        # reload model if CUDA check and load without CUDA
        elif self.deviceFrom == "cpu" and param.cuda == True:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            add_pointrend_config(self.cfg)
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(self.folder + self.path_to_config)
            self.cfg.MODEL.WEIGHTS = self.folder + self.path_to_model
            self.deviceFrom = "gpu"
            self.predictor = DefaultPredictor(self.cfg)
        # reload model if CUDA not check and load with CUDA
        elif self.deviceFrom == "gpu" and param.cuda == False:
            print("Chargement du modèle")
            self.cfg = get_cfg()
            add_pointrend_config(self.cfg)
            self.cfg.MODEL.DEVICE = "cpu"
            self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.threshold
            self.cfg.merge_from_file(self.folder + self.path_to_config)
            self.cfg.MODEL.WEIGHTS = self.folder + self.path_to_model
            self.deviceFrom = "cpu"
            self.predictor = DefaultPredictor(self.cfg)

        outputs = self.predictor(srcImage)

        # get outputs instances
        boxes = outputs["instances"].pred_boxes
        scores = outputs["instances"].scores
        classes = outputs["instances"].pred_classes
        masks = outputs["instances"].pred_masks

        # to numpy
        if param.cuda:
            boxes_np = boxes.tensor.cpu().numpy()
            scores_np = scores.cpu().numpy()
            classes_np = classes.cpu().numpy()
        else:
            boxes_np = boxes.tensor.numpy()
            scores_np = scores.numpy()
            classes_np = classes.numpy()

        self.emitStepProgress()

        # keep only the results with proba > threshold
        scores_np_tresh = list()
        for s in scores_np:
            if float(s) > param.proba:
                scores_np_tresh.append(s)

        if len(scores_np_tresh) > 0:
            # create random color for masks + boxes + labels
            colors = [[0, 0, 0]]
            for i in range(len(scores_np_tresh)):
                colors.append([
                    random.randint(0, 255),
                    random.randint(0, 255),
                    random.randint(0, 255), 255
                ])

            # text labels with scores
            labels = None
            class_names = MetadataCatalog.get(
                self.cfg.DATASETS.TRAIN[0]).get("thing_classes")
            if classes is not None and class_names is not None and len(
                    class_names) > 1:
                labels = [class_names[i] for i in classes]
            if scores_np_tresh is not None:
                if labels is None:
                    labels = [
                        "{:.0f}%".format(s * 100) for s in scores_np_tresh
                    ]
                else:
                    labels = [
                        "{} {:.0f}%".format(l, s * 100)
                        for l, s in zip(labels, scores_np_tresh)
                    ]

            # Show boxes + labels
            for i in range(len(scores_np_tresh)):
                prop_text = core.GraphicsTextProperty()
                # start with i+1 we don't use the first color dedicated for the label mask
                prop_text.color = colors[i + 1]
                prop_text.font_size = 7
                prop_rect = core.GraphicsRectProperty()
                prop_rect.pen_color = colors[i + 1]
                prop_rect.category = labels[i]
                output_graph.addRectangle(
                    float(boxes_np[i][0]), float(boxes_np[i][1]),
                    float(boxes_np[i][2] - boxes_np[i][0]),
                    float(boxes_np[i][3] - boxes_np[i][1]), prop_rect)
                output_graph.addText(labels[i], float(boxes_np[i][0]),
                                     float(boxes_np[i][1]), prop_text)

            self.emitStepProgress()

            # label mask
            nb_objects = len(masks[:len(scores_np_tresh)])
            if nb_objects > 0:
                masks = masks[:nb_objects, :, :, None]
                mask_or = masks[0] * nb_objects
                for j in range(1, nb_objects):
                    mask_or = torch.max(mask_or, masks[j] * (nb_objects - j))
                mask_numpy = mask_or.byte().cpu().numpy()
                mask_output.setImage(mask_numpy)

                # output mask apply to our original image
                # inverse colors to match boxes colors
                c = colors[1:]
                c = c[::-1]
                colors = [[0, 0, 0]]
                for col in c:
                    colors.append(col)
                self.setOutputColorMap(1, 0, colors)
        else:
            self.emitStepProgress()

        self.forwardInputImage(0, 1)

        # Step progress bar:
        self.emitStepProgress()

        # Call endTaskRun to finalize process
        self.endTaskRun()
    def run(self):
        # Core function of your process
        # Call beginTaskRun for initialization
        self.beginTaskRun()
        random.seed(1)

        # Get parameters :
        param = self.getParam()

        # Get input :
        input = self.getInput(0)
        src_image = input.getImage()

        h = src_image.shape[0]
        w = src_image.shape[1]

        # Step progress bar:
        self.emitStepProgress()

        # Load model
        if self.model is None or param.update:
            # Load class names
            self.load_class_names()
            # Load model
            use_torchvision = param.dataset != "Custom"
            self.model = models.mask_rcnn(use_pretrained=use_torchvision, classes=len(self.class_names))
            if param.dataset == "Custom":
                self.model.load_state_dict(torch.load(param.model_path))

            self.model.to(self.device)
            param.update = False

        pred = self.predict(src_image)
        cpu = torch.device("cpu")
        boxes = pred[0]["boxes"].to(cpu).numpy().tolist()
        scores = pred[0]["scores"].to(cpu).numpy().tolist()
        labels = pred[0]["labels"].to(cpu).numpy().tolist()
        masks = pred[0]["masks"]

        # Step progress bar:
        self.emitStepProgress()

        # Forward input image to result image
        self.forwardInputImage(0, 1)

        # Init graphics output
        graphics_output = self.getOutput(2)
        graphics_output.setNewLayer("MaskRCNN")
        graphics_output.setImageIndex(1)
        prop_text = core.GraphicsTextProperty()
        prop_rect = core.GraphicsRectProperty()

        # Get predictions
        detected_names = []
        detected_scores = []
        size = masks.size()
        valid_results = [scores.index(x) for x in scores if x > param.confidence]
        object_value = len(valid_results)
        mask_or = torch.zeros(1, size[2], size[3]).to(device=self.device)
        colors = [[0, 0, 0]]

        for i in valid_results:
            # color
            color = [random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)]
            prop_text.color = color
            prop_rect.pen_color = color
            # box
            box = boxes[i]
            w = box[2] - box[0]
            h = box[3] - box[1]
            graphics_box = graphics_output.addRectangle(float(box[0]), float(box[1]), float(w), float(h), prop_rect)
            graphics_box.setCategory(self.class_names[labels[i]])
            # label
            label = self.class_names[labels[i]] + ": {:.3f}".format(scores[i])
            graphics_output.addText(label, float(box[0]), float(box[1]), prop_text)
            detected_names.append(self.class_names[labels[i]])
            detected_scores.append(scores[i])
            # masks -> merge into a single labelled image
            mask = (masks[i] > param.mask_threshold).float()
            mask_or = torch.max(mask_or, mask * object_value)
            object_value -= 1
            colors.insert(1, color)

        # Segmentation mask output
        mask_output = self.getOutput(0)
        mask_numpy = mask_or.squeeze().byte().cpu().numpy()
        mask_output.setImage(mask_numpy)
        self.setOutputColorMap(1, 0, colors)

        # Init numeric output
        numeric_ouput = self.getOutput(3)
        numeric_ouput.clearData()
        numeric_ouput.setOutputType(dataprocess.NumericOutputType.TABLE)
        numeric_ouput.addValueList(detected_scores, "Probability", detected_names)

        # Step progress bar:
        self.emitStepProgress()

        # Call endTaskRun to finalize process
        self.endTaskRun()
Пример #9
0
def manage_outputs(predictions, img, param, graphics_output):
    crop_mask = True
    display_masks = True
    display_text = True
    display_bboxes = True
    display_scores = True

    # Put values in range [0 - 1]
    h, w, _ = img.shape

    # Post-processing
    save = cfg.rescore_bbox
    cfg.rescore_bbox = True
    t = postprocess(predictions,
                    w,
                    h,
                    visualize_lincomb=False,
                    crop_masks=crop_mask,
                    score_threshold=param.confidence)
    cfg.rescore_bbox = save

    # Copy
    idx = t[1].argsort(0, descending=True)[:param.top_k]
    if cfg.eval_mask_branch:
        # Masks are drawn on the GPU, so don't copy
        masks = t[3][idx]

    classes, scores, boxes = [x[idx].cpu().numpy() for x in t[:3]]

    # Filter available detections
    num_dets_to_consider = min(param.top_k, classes.shape[0])
    for j in range(num_dets_to_consider):
        if scores[j] < param.confidence:
            num_dets_to_consider = j
            break

    # Quick and dirty lambda for selecting the color for a particular index
    # Also keeps track of a per-gpu color cache for maximum speed
    class_color = False

    def get_color(j, on_gpu=None):
        global color_cache
        color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS)

        if on_gpu is not None and color_idx in color_cache[on_gpu]:
            return color_cache[on_gpu][color_idx]
        else:
            color = COLORS[color_idx]
            # The image might come in as RGB or BRG, depending
            color = (color[2], color[1], color[0])

            if on_gpu is not None:
                color = torch.Tensor(color).to(on_gpu).float() / 255.
                color_cache[on_gpu][color_idx] = color
            return color

    # First, draw the masks on the GPU where we can do it really fast
    # Beware: very fast but possibly unintelligible mask-drawing code ahead
    # I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice
    if display_masks and cfg.eval_mask_branch and num_dets_to_consider > 0:
        # After this, mask is of size [num_dets, h, w, 1]
        masks = masks[:num_dets_to_consider, :, :, None]

        # Cumulative mask

        # For each object, we create a mask with label values for display purpose
        # For overlapping objects, we take those with the better probability with a MAX operator
        # that's why we reverse the mask weights
        mask_or = masks[0] * num_dets_to_consider
        for j in range(1, num_dets_to_consider):
            mask_or = torch.max(mask_or, masks[j] * (num_dets_to_consider - j))

        # Get the numpy array of the mask
        mask_numpy = mask_or.byte().cpu().numpy()

    colorvec = [[0, 0, 0]]

    if num_dets_to_consider == 0:
        return mask_numpy, colorvec

    if display_text or display_bboxes:
        for j in reversed(range(num_dets_to_consider)):
            x1, y1, x2, y2 = boxes[j, :]
            color = get_color(j)
            colorvec.append(list(color))
            score = scores[j]

            if display_bboxes:
                rect_prop = core.GraphicsRectProperty()
                rect_prop.pen_color = list(color)
                graphics_box = graphics_output.addRectangle(
                    float(x1), float(y1), float(x2 - x1), float(y2 - y1),
                    rect_prop)
                graphics_box.setCategory(cfg.dataset.class_names[classes[j]])

            if display_text:
                _class = cfg.dataset.class_names[classes[j]]
                text_str = '%s: %.2f' % (_class,
                                         score) if display_scores else _class

                text_prop = core.GraphicsTextProperty()
                text_prop.bold = True
                graphics_output.addText(text_str, float(x1), float(y1),
                                        text_prop)

    return mask_numpy, colorvec