def __init__(self): self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() self.com.go_to_initial_state(self.whole_body) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base, self.tl) self.web = Web_Labeler() print "after thread"
def __init__(self): ''' Initialization class for a Policy Parameters ---------- yumi : An instianted yumi robot com : The common class for the robot cam : An open bincam class debug : bool A bool to indicate whether or not to display a training set point for debuging. ''' self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() if not DEBUG: self.com.go_to_initial_state(self.whole_body) self.tt = TableTop() self.tt.find_table(self.robot) self.wl = Python_Labeler(cam=self.cam) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.ds = data_saver('tpc_rollouts/rollouts') self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, cam, options, robot.get('gripper')) self.gm = GraspManipulator(self.gp, self.gripper, self.whole_body, self.omni_base, self.tt) print "after thread"
def __init__(self): """ Class to run HSR lego task """ self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() # if not DEBUG: self.com.go_to_initial_state(self.whole_body) # self.tt = TableTop() # self.tt.find_table(self.robot) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base) self.collision_world = hsrb_interface.collision_world.CollisionWorld( "global_collision_world") self.collision_world.remove_all() self.collision_world.add_box(x=.8, y=.9, z=0.5, pose=geometry.pose(y=1.4, z=0.15), frame_id='map') print "after thread"
def __init__(self): """ Class to run HSR lego task """ self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() self.com.go_to_initial_state(self.whole_body) self.grasp_count = 0 self.helper = Helper(cfg) self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base, self.tl) self.dl = DataLogger("stats_data/model_base", cfg.EVALUATE) self.web = Web_Labeler(cfg.NUM_ROBOTS_ON_NETWORK) model_path = 'main/output_inference_graph.pb' label_map_path = 'main/object-detection.pbtxt' self.det = Detector(model_path, label_map_path) print "after thread"
class BedMaker(): def __init__(self): ''' Initialization class for a Policy Parameters ---------- yumi : An instianted yumi robot com : The common class for the robot cam : An open bincam class debug : bool A bool to indicate whether or not to display a training set point for debuging. ''' self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() if not DEBUG: self.com.go_to_initial_state(self.whole_body) self.tt = TableTop() self.tt.find_table(self.robot) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) print "after thread" def find_mean_depth(self, d_img): ''' Evaluates the current policy and then executes the motion specified in the the common class ''' indx = np.nonzero(d_img) mean = np.mean(d_img[indx]) return def lego_demo(self): self.rollout_data = [] self.get_new_grasp = True if not DEBUG: self.position_head() b = time.time() while True: time.sleep(1) #making sure the robot is finished moving a = time.time() c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() cv2.imwrite("debug_imgs/c_img.png", c_img) print "time to get images", time.time() - a print "\n new iteration" if (not c_img == None and not d_img == None): c_ms, dirs, _ = run_connected_components(c_img) img = draw(c_img, c_ms, dirs) # # IPython.embed() for c_m, direction in zip(c_ms, dirs): pose, rot = self.compute_grasp(c_m, direction, d_img) rot -= pi / 2.0 print "pose, rot:", pose, rot ####DETERMINE WHAT OBJECT TO GRASP grasp_name = self.gripper.get_grasp_pose(pose[0], pose[1], pose[2], rot, c_img=c_img) self.execute_grasp(grasp_name) self.whole_body.move_to_go() self.position_head() def execute_grasp(self, grasp_name): self.gripper.open_gripper() self.whole_body.end_effector_frame = 'hand_palm_link' self.whole_body.move_end_effector_pose(geometry.pose(), grasp_name) self.gripper.close_gripper() self.whole_body.move_end_effector_pose(geometry.pose(z=-0.1), grasp_name) self.whole_body.move_end_effector_pose(geometry.pose(z=-0.1), 'head_down') self.gripper.open_gripper() def compute_grasp(self, c_m, direction, d_img): if direction: rot = 0.0 else: rot = 1.57 x = c_m[1] y = c_m[0] z_box = d_img[y - 20:y + 20, x - 20:x + 20] z = self.gp.find_mean_depth(z_box) return [x, y, z], rot def singulate(self, start, end, c_img, d_img): # [355.9527559055119, 123.53543307086613, 977.26812500000005] 0.0 rot = np.pi / 2 + np.arctan2(end[0] - start[0], end[1] - start[1]) self.gripper.close_gripper() # self.go_to_point(start, rot, c_img, d_img) # self.go_to_point(end, rot, c_img, d_img) y, x = start z_box = d_img[y - 20:y + 20, x - 20:x + 20] z = self.gp.find_mean_depth(z_box) # above_start_pose_name = self.gripper.get_grasp_pose(x,y,z,rot,c_img=c_img) start_pose_name = self.gripper.get_grasp_pose(x, y, z, rot, c_img=c_img) y, x = end z_box = d_img[y - 20:y + 20, x - 20:x + 20] z = self.gp.find_mean_depth(z_box) end_pose_name = self.gripper.get_grasp_pose(x, y, z, rot, c_img=c_img) # raw_input("Click enter to move to " + above_start_pose_name) # self.whole_body.move_end_effector_pose(geometry.pose(), start_pose_name) # raw_input("Click enter to singulate from " + start_pose_name) print "singulating", start_pose_name self.whole_body.move_end_effector_pose(geometry.pose(z=-0.05), start_pose_name) self.whole_body.move_end_effector_pose(geometry.pose(z=-.01), start_pose_name) # raw_input("Click enter to singulate to " + end_pose_name) print "singulating", end_pose_name self.whole_body.move_end_effector_pose(geometry.pose(z=-.01), end_pose_name) self.gripper.open_gripper() def go_to_point(self, point, rot, c_img, d_img): y, x = point z_box = d_img[y - 20:y + 20, x - 20:x + 20] z = self.gp.find_mean_depth(z_box) print "singulation pose:", x, y, z pose_name = self.gripper.get_grasp_pose(x, y, z, rot, c_img=c_img) raw_input("Click enter to move to " + pose_name) self.whole_body.move_end_effector_pose(geometry.pose(), pose_name) def position_head(self): self.tt.move_to_pose(self.omni_base, 'lower_start') self.whole_body.move_to_joint_positions({'head_tilt_joint': -0.8})
class LabelDemo(): def __init__(self): self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() self.com.go_to_initial_state(self.whole_body) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base, self.tl) self.web = Web_Labeler() print "after thread" def bbox_to_fg(self, bbox, c_img, col_img): obj_mask = crop_img(c_img, bycoords=[bbox[1], bbox[3], bbox[0], bbox[2]]) obj_workspace_img = col_img.mask_binary(obj_mask) fg = obj_workspace_img.foreground_mask(cfg.COLOR_TOL, ignore_black=True) return fg, obj_workspace_img def test_bbox_overlap(self, box_a, box_b): #bbox has format [xmin, ymin, xmax, ymax] if box_a[0] > box_b[2] or box_a[2] < box_b[0]: return False if box_a[1] > box_b[3] or box_a[3] < box_b[1]: return False return True def find_isolated_objects(self, bboxes, c_img): valid_bboxes = [] for curr_ind in range(len(bboxes)): curr_bbox = bboxes[curr_ind] overlap = False for test_ind in range(curr_ind + 1, len(bboxes)): test_bbox = bboxes[test_ind] if self.test_bbox_overlap(curr_bbox, test_bbox): overlap = True break if not overlap: valid_bboxes.append(curr_bbox) return valid_bboxes def label_demo(self): self.gm.position_head() time.sleep(3) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() while not (c_img is None or d_img is None): path = "/home/autolab/Workspaces/michael_working/siemens_challenge/debug_imgs/web.png" cv2.imwrite(path, c_img) time.sleep(2) #make sure new image is written before being read # print "\n new iteration" main_mask = crop_img(c_img, simple=True) col_img = ColorImage(c_img) workspace_img = col_img.mask_binary(main_mask) labels = self.web.label_image(path) obj = labels['objects'][0] bbox = obj['box'] class_label = obj['class'] #bbox has format [xmin, ymin, xmax, ymax] fg, obj_w = self.bbox_to_fg(bbox, c_img, col_img) cv2.imwrite("debug_imgs/test.png", obj_w.data) groups = get_cluster_info(fg) display_grasps(workspace_img, groups) group = groups[0] pose, rot = self.gm.compute_grasp(group.cm, group.dir, d_img) grasp_pose = self.gripper.get_grasp_pose(pose[0], pose[1], pose[2], rot, c_img=workspace_img.data) self.gm.execute_grasp(grasp_pose, class_num=class_label) #reset to start self.whole_body.move_to_go() self.gm.move_to_home() self.gm.position_head() time.sleep(3) c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data()
class LabelDemo(): def __init__(self): self.robot = hsrb_interface.Robot() self.br = tf.TransformBroadcaster() self.rgbd_map = RGBD2Map(self.br) # IPython.embed() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() self.com.go_to_initial_state(self.whole_body) self.grasp_count = 0 self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base, self.tl) self.web = Web_Labeler() thread.start_new_thread(self.broadcast_temp_bin,()) time.sleep(3) print "after thread" def broadcast_temp_bin(self): while True: self.br.sendTransform((1, 1, 0.6), tf.transformations.quaternion_from_euler(ai=0.0,aj=1.57,ak=0.0), rospy.Time.now(), 'temp_bin', # 'head_rgbd_sensor_link') 'map') rospy.sleep(1) def bbox_to_fg(self, bbox, c_img, col_img): obj_mask = crop_img(c_img, bycoords = [bbox[1], bbox[3], bbox[0], bbox[2]]) obj_workspace_img = col_img.mask_binary(obj_mask) fg = obj_workspace_img.foreground_mask(cfg.COLOR_TOL, ignore_black=True) return fg, obj_workspace_img def test_bbox_overlap(self, box_a, box_b): #bbox has format [xmin, ymin, xmax, ymax] if box_a[0] > box_b[2] or box_a[2] < box_b[0]: return False if box_a[1] > box_b[3] or box_a[3] < box_b[1]: return False return True def find_isolated_objects(self, bboxes, c_img): valid_bboxes = [] for curr_ind in range(len(bboxes)): curr_bbox = bboxes[curr_ind] overlap = False for test_ind in range(curr_ind + 1, len(bboxes)): test_bbox = bboxes[test_ind] if self.test_bbox_overlap(curr_bbox, test_bbox): overlap = True break if not overlap: valid_bboxes.append(curr_bbox) return valid_bboxes def label_demo(self): """ Main method which executes the stuff we're interested in. Should apply to both the physical and simulated HSRs. Call as `python main/test_labeling.py`. """ self.gm.position_head() time.sleep(3) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() path = "/home/ron/siemens_sim/siemens_challenge/debug_imgs/web.png" cv2.imwrite(path, c_img) time.sleep(2) #make sure new image is written before being read # print "\n new iteration" main_mask = crop_img(c_img, simple=True) col_img = ColorImage(c_img) workspace_img = col_img.mask_binary(main_mask) labels = self.web.label_image(path) obj = labels['objects'][0] bbox = obj['box'] class_label = obj['class'] #bbox has format [xmin, ymin, xmax, ymax] fg, obj_w = self.bbox_to_fg(bbox, c_img, col_img) cv2.imwrite("debug_imgs/test.png", obj_w.data) groups = get_cluster_info(fg) display_grasps(workspace_img, groups) group = groups[0] print(d_img) pose,rot = self.gm.compute_grasp(group.cm, group.dir, d_img) pose = find_pose(pose) if pose == None: print("unable to find corresponding item.") sys.exit() a = tf.transformations.quaternion_from_euler(ai=-2.355,aj=-3.14,ak=0.0) b = tf.transformations.quaternion_from_euler(ai=0.0,aj=0.0,ak=1.57) base_rot = tf.transformations.quaternion_multiply(a,b) print("now about to get grasp pose, w/pose: {}, rot: {}".format(pose, rot)) thread.start_new_thread(self.gripper.loop_broadcast,(pose,base_rot,rot)) time.sleep(5) print("now calling execute_grasp w/grasp_pose: {}".format(grasp_pose)) # IPython.embed() self.gm.execute_grasp("grasp_0") self.whole_body.move_end_effector_pose(geometry.pose(),"temp_bin") self.gripper.open_gripper() #reset to start self.whole_body.move_to_go() # self.gm.move_to_home() self.gm.position_head() time.sleep(3)
class LegoDemo(): def __init__(self): """ Class to run HSR lego task """ self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() # if not DEBUG: self.com.go_to_initial_state(self.whole_body) # self.tt = TableTop() # self.tt.find_table(self.robot) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base) self.collision_world = hsrb_interface.collision_world.CollisionWorld( "global_collision_world") self.collision_world.remove_all() self.collision_world.add_box(x=.8, y=.9, z=0.5, pose=geometry.pose(y=1.4, z=0.15), frame_id='map') print "after thread" def find_mean_depth(self, d_img): """ Evaluates the current policy and then executes the motion specified in the the common class """ indx = np.nonzero(d_img) mean = np.mean(d_img[indx]) return def get_success(self, action): """ Parameters ---------- action : str action to query success of Returns ------- :str: y or n """ if cfg.COLLECT_DATA and cfg.QUERY: print("Was " + action + " successful? (y or n)") succ = raw_input() while not (succ == "y" or succ == "n"): print("Enter only y or n to indicate success of " + action) succ = raw_input() return succ else: return "no data queried" def get_int(self): """ Returns ------- int """ if cfg.COLLECT_DATA and cfg.QUERY: print("How many legos are on the table?") inp = raw_input() while not inp.isdigit(): print("Enter an integer.") inp = raw_input() return inp else: return "no data queried" def get_str(self): """ Returns ------- :str: arbitary value """ if cfg.COLLECT_DATA and cfg.QUERY: print( "Any notes? (pushed legos off table, ran into table, etc.) (no if none)" ) inp = raw_input() return inp else: return "no data queried" def run_singulation(self, col_img, main_mask, d_img, to_singulate): """ Parameters ---------- col_img : `ColorImage` main_mask : `BinaryImage` d_img : 'DepthImage' to_singulate : list of `Group` """ print("SINGULATING") self.dm.update_traj("action", "singulate") a = time.time() singulator = Singulation(col_img, main_mask, [g.mask for g in to_singulate]) waypoints, rot, free_pix = singulator.get_singulation() self.dm.update_traj("compute_singulate_time", time.time() - a) singulator.display_singulation() self.dm.update_traj("singulate_info", (waypoints, rot, free_pix)) self.dm.update_traj("singulate_successes", "crashed") self.dm.update_traj("execute_singulate_time", "crashed") self.dm.overwrite_traj() a = time.time() self.gm.singulate(waypoints, rot, col_img.data, d_img, expand=True) self.dm.update_traj("execute_singulate_time", time.time() - a) self.dm.update_traj("singulate_success", self.get_success("singulation")) self.dm.overwrite_traj() def run_grasps(self, workspace_img, to_grasp): """ Parameters ---------- workspace_img : `ColorImage` to_grasp : list of tuple of: (`Group`, grasp_pose, suction_pose, class_num) """ print("GRASPING") #impose ordering on grasps (by closest/highest y first) to_grasp.sort(key=lambda g: -1 * g[0].cm[0]) self.dm.update_traj("action", "grasp") self.dm.update_traj("all_grasps_info", [(c[0].cm, c[0].dir, c[0].mask.data, c[3]) for c in to_grasp]) if not cfg.CHAIN_GRASPS: to_grasp = to_grasp[0:1] self.dm.update_traj("run_grasps_info", [(c[0].cm, c[0].dir, c[0].mask.data, c[3]) for c in to_grasp]) display_grasps(workspace_img, [g[0] for g in to_grasp]) successes = ["not attempted" for i in range(len(to_grasp))] correct_colors = ["not attempted" for i in range(len(to_grasp))] times = ["not attempted" for i in range(len(to_grasp))] for i in range(len(to_grasp)): print "grasping", to_grasp[i][1] successes[i] = "crashed" correct_colors[i] = "crashed" times[i] = "crashed" self.dm.update_traj("grasp_successes", successes) self.dm.update_traj("grasp_colors", correct_colors) self.dm.update_traj("execute_grasp_times", times) self.dm.overwrite_traj() a = time.time() self.gm.execute_grasp(to_grasp[i][1], class_num=to_grasp[i][3]) # self.gm.execute_suction(to_grasp[i][2], to_grasp[i][3]) times[i] = time.time() - a successes[i] = self.get_success("grasp") correct_colors[i] = self.get_success("correct color") self.dm.update_traj("grasp_successes", successes) self.dm.update_traj("grasp_colors", correct_colors) self.dm.update_traj("execute_grasp_times", times) self.dm.overwrite_traj() def clusters_to_actions(self, groups, col_img, d_img, workspace_img): """ Parameters ---------- groups : list of `Group` col_img : `ColorImage` d_img : `DepthImage` workspace_img : `ColorImage` Returns ------- list of tuples of form: (`Group`, grasp_pose, suction_pose, class_num) list of `Group` """ find_grasps_times = [] compute_grasps_times = [] find_hsv_times = [] to_singulate = [] to_grasp = [] for group in groups: a = time.time() inner_groups = grasps_within_pile(col_img.mask_binary(group.mask)) find_grasps_times.append(time.time() - a) if len(inner_groups) == 0: to_singulate.append(group) else: for in_group in inner_groups: a = time.time() pose, rot = self.gm.compute_grasp(in_group.cm, in_group.dir, d_img) grasp_pose = self.gripper.get_grasp_pose( pose[0], pose[1], pose[2], rot, c_img=workspace_img.data) suction_pose = self.suction.get_grasp_pose( pose[0], pose[1], pose[2], rot, c_img=workspace_img.data) compute_grasps_times.append(time.time() - a) a = time.time() class_num = hsv_classify(col_img.mask_binary( in_group.mask)) find_hsv_times.append(time.time() - a) to_grasp.append( (in_group, grasp_pose, suction_pose, class_num)) self.dm.update_traj("compute_grasps_times", compute_grasps_times) self.dm.update_traj("find_grasps_times", find_grasps_times) self.dm.update_traj("find_hsv_times", find_hsv_times) return to_grasp, to_singulate def lego_demo(self): if not cfg.COLLECT_DATA: print("WARNING: NO DATA IS BEING COLLECTED") print("TO COLLECT DATA, CHANGE COLLECT_DATA IN config_tpc") self.dm = DataManager() self.get_new_grasp = True # DEBUG = False # if not DEBUG: # self.gm.position_head() time.sleep(3) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() while not (c_img is None or d_img is None): print "\n new iteration" main_mask = crop_img(c_img, use_preset=True, arc=False) col_img = ColorImage(c_img) workspace_img = col_img.mask_binary(main_mask) self.dm.clear_traj() self.dm.update_traj("c_img", c_img) self.dm.update_traj("d_img", d_img) self.dm.update_traj("stop_condition", "crash") cv2.imwrite("debug_imgs/c_img.png", c_img) self.dm.update_traj("crop", workspace_img.data) a = time.time() groups = run_connected_components(workspace_img, viz=True) self.dm.update_traj("connected_components_time", time.time() - a) self.dm.update_traj("num_legos", self.get_int()) self.dm.append_traj() print "num masses", len(groups) if len(groups) == 0: print("cleared workspace") self.dm.update_traj("stop_condition", self.get_success("clearing table")) self.dm.overwrite_traj() time.sleep(5) break to_grasp, to_singulate = self.clusters_to_actions( groups, col_img, d_img, workspace_img) self.whole_body.collision_world = self.collision_world if len(to_grasp) > 0: self.run_grasps(workspace_img, to_grasp) else: self.run_singulation(col_img, main_mask, d_img, to_singulate) self.dm.update_traj("notes", self.get_str()) #reset to start self.whole_body.move_to_go() self.gm.move_to_home() self.gm.position_head() time.sleep(8) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() self.dm.update_traj("stop_condition", "none") self.dm.update_traj("c_img_result", c_img) self.dm.update_traj("d_img_result", d_img) self.dm.overwrite_traj()
cam = RGBD() com = COM() com.go_to_initial_state(whole_body) tt = TableTop() tt.find_table(robot) grasp_count = 0 br = tf.TransformBroadcaster() tl = TransformListener() gp = GraspPlanner() gripper = Crane_Gripper(gp, cam, com.Options, robot.get('gripper')) suction = Suction_Gripper(gp, cam, com.Options, robot.get('suction')) gm = GraspManipulator(gp, gripper, suction, whole_body, omni_base, tt) gm.position_head() print "after thread" curr_offsets = np.array([0, 0, -0.5]) curr_rot = np.array([0.0,0.0,1.57]) while True: label = id_generator() tt.make_new_pose(curr_offsets,label,rot = curr_rot) whole_body.move_end_effector_pose(geometry.pose(z=-0.1), label) delta = raw_input() while not (delta in ["+x", "-x", "+y", "-y", "+z", "-z"]): print("not a valid delta")
class BedMaker(): def __init__(self): ''' Initialization class for a Policy Parameters ---------- yumi : An instianted yumi robot com : The common class for the robot cam : An open bincam class debug : bool A bool to indicate whether or not to display a training set point for debuging. ''' self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() if not DEBUG: self.com.go_to_initial_state(self.whole_body) self.tt = TableTop() self.tt.find_table(self.robot) self.wl = Python_Labeler(cam=self.cam) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.ds = data_saver('tpc_rollouts/rollouts') self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, cam, options, robot.get('gripper')) self.gm = GraspManipulator(self.gp, self.gripper, self.whole_body, self.omni_base, self.tt) print "after thread" def find_mean_depth(self, d_img): ''' Evaluates the current policy and then executes the motion specified in the the common class ''' indx = np.nonzero(d_img) mean = np.mean(d_img[indx]) return def lego_demo(self): self.rollout_data = [] self.get_new_grasp = True if not DEBUG: self.gm.position_head() while True: time.sleep(1) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() cv2.imwrite("debug_imgs/c_img.png", c_img) print "\n new iteration" if (not c_img == None and not d_img == None): #label image data = self.wl.label_image(c_img) c_img = self.cam.read_color_data() grasp_boxes = [] suction_boxes = [] singulate_boxes = [] for i in range(data['num_labels']): bbox = data['objects'][i]['box'] classnum = data['objects'][i]['class'] classname = ['grasp', 'singulate', 'suction', 'quit'][classnum] if classname == "grasp": grasp_boxes.append(bbox) elif classname == "suction": suction_boxes.append(bbox) elif classname == "singulate": singulate_boxes.append(bbox) elif classname == "quit": self.ds.save_rollout() self.gm.move_to_home() self.ds.append_data_to_rollout(c_img, data) main_mask = crop_img(c_img) col_img = ColorImage(c_img) workspace_img = col_img.mask_binary(main_mask) grasps = [] viz_info = [] for i in range(len(grasp_boxes)): bbox = grasp_boxes[i] center_mass, direction = bbox_to_grasp(bbox, c_img, d_img) viz_info.append([center_mass, direction]) pose, rot = self.gm.compute_grasp(center_mass, direction, d_img) grasps.append( self.gripper.get_grasp_pose(pose[0], pose[1], pose[2], rot, c_img=workspace_img.data)) suctions = [] for i in range(len(suction_boxes)): suctions.append("compute_suction?") if len(grasps) > 0 or len(suctions) > 0: cv2.imwrite( "grasps.png", visualize(workspace_img, [v[0] for v in viz_info], [v[1] for v in viz_info])) print "running grasps" for grasp in grasps: print "grasping", grasp self.gm.execute_grasp(grasp) print "running suctions" for suction in suctions: print "suctioning", suction #execute suction elif len(singulate_boxes) > 0: print("singulating") bbox = singulate_boxes[0] obj_mask = bbox_to_mask(bbox, c_img) start, end = find_singulation(col_img, main_mask, obj_mask) display_singulation(start, end, workspace_img) self.gm.singulate(start, end, c_img, d_img) else: print("cleared workspace") self.whole_body.move_to_go() self.gm.position_head()
class FullWebDemo(): def __init__(self): """ Class to run HSR lego task """ self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() self.com.go_to_initial_state(self.whole_body) self.grasp_count = 0 self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base, self.tl) self.web = Web_Labeler() print "after thread" def run_grasp(self, bbox, c_img, col_img, workspace_img, d_img): print("grasping a " + cfg.labels[bbox.label]) #bbox has format [xmin, ymin, xmax, ymax] fg, obj_w = bbox.to_mask(c_img, col_img) # cv2.imwrite("debug_imgs/test.png", obj_w.data) # cv2.imwrite("debug_imgs/test2.png", fg.data) groups = get_cluster_info(fg) curr_tol = cfg.COLOR_TOL while len(groups) == 0 and curr_tol > 10: curr_tol -= 5 #retry with lower tolerance- probably white object fg, obj_w = bbox.to_mask(c_img, col_img, tol=curr_tol) groups = get_cluster_info(fg) if len(groups) == 0: print("No object within bounding box") return False display_grasps(workspace_img, groups) group = groups[0] pose, rot = self.gm.compute_grasp(group.cm, group.dir, d_img) grasp_pose = self.gripper.get_grasp_pose(pose[0], pose[1], pose[2], rot, c_img=workspace_img.data) self.gm.execute_grasp(grasp_pose, class_num=bbox.label) def run_singulate(self, col_img, main_mask, to_singulate, d_img): print("singulating") singulator = Singulation(col_img, main_mask, [g.mask for g in to_singulate]) waypoints, rot, free_pix = singulator.get_singulation() singulator.display_singulation() self.gm.singulate(waypoints, rot, col_img.data, d_img, expand=True) def full_web_demo(self): self.gm.position_head() time.sleep(3) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() while not (c_img is None or d_img is None): path = "/home/autolab/Workspaces/michael_working/siemens_challenge/debug_imgs/web.png" cv2.imwrite(path, c_img) time.sleep(2) #make sure new image is written before being read # print "\n new iteration" main_mask = crop_img(c_img, simple=True) col_img = ColorImage(c_img) workspace_img = col_img.mask_binary(main_mask) labels = self.web.label_image(path) objs = labels['objects'] bboxes = [Bbox(obj['box'], obj['class']) for obj in objs] single_objs = find_isolated_objects(bboxes) if len(single_objs) > 0: to_grasp = select_first_obj(single_objs) self.run_grasp(to_grasp, c_img, col_img, workspace_img, d_img) else: #for accurate singulation should have bboxes for all fg_imgs = [box.to_mask(c_img, col_img) for box in bboxes] groups = [get_cluster_info(fg[0])[0] for fg in fg_imgs] groups = merge_groups(groups, cfg.DIST_TOL) self.run_singulate(col_img, main_mask, groups, d_img) #reset to start self.whole_body.move_to_go() self.gm.move_to_home() self.gm.position_head() time.sleep(3) c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data()
class SiemensDemo(): def __init__(self): """ Class to run HSR lego task """ self.robot = hsrb_interface.Robot() self.rgbd_map = RGBD2Map() self.omni_base = self.robot.get('omni_base') self.whole_body = self.robot.get('whole_body') self.side = 'BOTTOM' self.cam = RGBD() self.com = COM() self.com.go_to_initial_state(self.whole_body) self.grasp_count = 0 self.helper = Helper(cfg) self.br = tf.TransformBroadcaster() self.tl = TransformListener() self.gp = GraspPlanner() self.gripper = Crane_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('gripper')) self.suction = Suction_Gripper(self.gp, self.cam, self.com.Options, self.robot.get('suction')) self.gm = GraspManipulator(self.gp, self.gripper, self.suction, self.whole_body, self.omni_base, self.tl) self.dl = DataLogger("stats_data/model_base", cfg.EVALUATE) self.web = Web_Labeler(cfg.NUM_ROBOTS_ON_NETWORK) model_path = 'main/output_inference_graph.pb' label_map_path = 'main/object-detection.pbtxt' self.det = Detector(model_path, label_map_path) print "after thread" def run_grasp(self, bbox, c_img, col_img, workspace_img, d_img): print("grasping a " + cfg.labels[bbox.label]) group = bbox.to_group(c_img, col_img) display_grasps(workspace_img, [group]) pose, rot = self.gm.compute_grasp(group.cm, group.dir, d_img) grasp_pose = self.gripper.get_grasp_pose(pose[0], pose[1], pose[2], rot, c_img=workspace_img.data) self.gm.execute_grasp(grasp_pose, class_num=bbox.label) def run_singulate(self, col_img, main_mask, to_singulate, d_img): print("singulating") singulator = Singulation(col_img, main_mask, [g.mask for g in to_singulate]) waypoints, rot, free_pix = singulator.get_singulation() singulator.display_singulation() self.gm.singulate(waypoints, rot, col_img.data, d_img, expand=True) def get_bboxes_from_net(self, path): output_dict, vis_util_image = self.det.predict(path) plt.savefig('debug_imgs/predictions.png') plt.close() plt.clf() plt.cla() img = cv2.imread(path) boxes = format_net_bboxes(output_dict, img.shape) return boxes, vis_util_image def get_bboxes_from_web(self, path): labels = self.web.label_image(path) objs = labels['objects'] bboxes = [Bbox(obj['box'], obj['class']) for obj in objs] return bboxes def determine_to_ask_for_help(self, bboxes, col_img): bboxes = deepcopy(bboxes) col_img = deepcopy(col_img) single_objs = find_isolated_objects_by_overlap(bboxes) if len(single_objs) > 0: return False else: isolated_exist = find_isolated_objects_by_distance(bboxes, col_img) return isolated_exist def get_bboxes(self, path, col_img): boxes, vis_util_image = self.get_bboxes_from_net(path) #low confidence or no objects if self.determine_to_ask_for_help(boxes, col_img): self.helper.asked = True self.helper.start_timer() boxes = self.get_bboxes_from_web(path) self.helper.stop_timer() self.dl.save_stat("duration", self.helper.duration) self.dl.save_stat("num_online", cfg.NUM_ROBOTS_ON_NETWORK) return boxes, vis_util_image def siemens_demo(self): self.gm.position_head() time.sleep(3) #making sure the robot is finished moving c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data() while not (c_img is None or d_img is None): path = "/home/autolab/Workspaces/michael_working/siemens_challenge/debug_imgs/web.png" cv2.imwrite(path, c_img) time.sleep(2) #make sure new image is written before being read # print "\n new iteration" main_mask = crop_img(c_img, simple=True) col_img = ColorImage(c_img) workspace_img = col_img.mask_binary(main_mask) bboxes, vis_util_image = self.get_bboxes(path, col_img) if len(bboxes) == 0: print("Cleared the workspace") print("Add more objects, then resume") IPython.embed() else: box_viz = draw_boxes(bboxes, c_img) cv2.imwrite("debug_imgs/box.png", box_viz) single_objs = find_isolated_objects_by_overlap(bboxes) grasp_sucess = 1.0 if len(single_objs) == 0: single_objs = find_isolated_objects_by_distance( bboxes, col_img) if len(single_objs) > 0: to_grasp = select_first_obj(single_objs) singulation_time = 0.0 self.run_grasp(to_grasp, c_img, col_img, workspace_img, d_img) grasp_sucess = self.dl.record_success( "grasp", other_data=[c_img, vis_util_image, d_img]) else: #for accurate singulation should have bboxes for all fg_imgs = [box.to_mask(c_img, col_img) for box in bboxes] groups = [get_cluster_info(fg[0])[0] for fg in fg_imgs] groups = merge_groups(groups, cfg.DIST_TOL) self.run_singulate(col_img, main_mask, groups, d_img) sing_start = time.time() singulation_success = self.dl.record_success( "singulation", other_data=[c_img, vis_util_image, d_img]) singulation_time = time.time() - sing_start if cfg.EVALUATE: reward = self.helper.get_reward(grasp_sucess, singulation_time) self.dl.record_reward(reward) #reset to start self.whole_body.move_to_go() self.gm.move_to_home() self.gm.position_head() time.sleep(3) c_img = self.cam.read_color_data() d_img = self.cam.read_depth_data()