def __init__(self, dim=3, z_dim=128, c_dim=128, hidden_size=256, leaky=False, legacy=False): super().__init__() self.z_dim = z_dim if not z_dim == 0: self.fc_z = nn.Linear(z_dim, hidden_size) self.fc_p = nn.Conv1d(dim, hidden_size, 1) self.block0 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block1 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block2 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block3 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block4 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) if not legacy: self.bn = CBatchNorm1d(c_dim, hidden_size) else: self.bn = CBatchNorm1d_legacy(c_dim, hidden_size) self.fc_out = nn.Conv1d(hidden_size, 1, 1) if not leaky: self.actvn = F.relu else: self.actvn = lambda x: F.leaky_relu(x, 0.2)
def __init__(self, z_dim=128, c_dim=128, hidden_size=256, leaky=False, legacy=False): super().__init__() self.z_dim = z_dim if z_dim != 0: self.fc_z = tf.keras.layers.Dense(hidden_size) self.fc_p = tf.keras.layers.Conv1D(hidden_size, 1) self.block0 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block1 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block2 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block3 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block4 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) if not legacy: self.bn = CBatchNorm1d(c_dim, hidden_size) else: self.bn = CBatchNorm1dLegacy(c_dim, hidden_size) self.fc_out = tf.keras.layers.Conv1D(1, 1) if not leaky: self.actvn = tf.keras.layers.ReLU() else: self.actvn = tf.keras.layers.LeakyReLU(0.2)
def __init__(self, dim=3, z_dim=128, c_dim=128, hidden_size=256, leaky=False, legacy=False): super().__init__() self.z_dim = z_dim if not z_dim == 0: self.fc_z = nn.Linear(z_dim, hidden_size) self.pe = positional_encoding() # print('hidden_size',hidden_size) # self.fc_p = nn.Conv1d(dim, hidden_size, 1) self.fc_pos = nn.Linear(60, 256) # self.block0 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) # self.block1 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) # self.block2 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) # self.block3 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) # self.block4 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block0 = CResnetBlockConv1d(256, hidden_size, legacy=legacy) self.block1 = CResnetBlockConv1d_alpa(67, hidden_size, alpa_dim=256, legacy=legacy) self.block2 = CResnetBlockConv1d_alpa(131, hidden_size, alpa_dim=67, legacy=legacy) self.block3 = CResnetBlockConv1d_alpa(259, hidden_size, alpa_dim=131, legacy=legacy) self.block4 = CResnetBlockConv1d_alpa(515, hidden_size, alpa_dim=259, legacy=legacy) if not legacy: self.bn = CBatchNorm1d(c_dim, hidden_size) else: self.bn = CBatchNorm1d_legacy(c_dim, hidden_size) self.fc_out = nn.Conv1d(hidden_size, 1, 1) if not leaky: self.actvn = F.relu else: self.actvn = lambda x: F.leaky_relu(x, 0.2)
def __init__(self, dim=3, z_dim=128, c_dim=128, hidden_size=256, leaky=False): super().__init__() self.z_dim = z_dim if not z_dim == 0: self.fc_z = nn.Linear(z_dim, hidden_size) self.fc_p = nn.Conv1d(dim, hidden_size, 1) self.fc_0 = nn.Conv1d(hidden_size, hidden_size, 1) self.fc_1 = nn.Conv1d(hidden_size, hidden_size, 1) self.fc_2 = nn.Conv1d(hidden_size, hidden_size, 1) self.fc_3 = nn.Conv1d(hidden_size, hidden_size, 1) self.fc_4 = nn.Conv1d(hidden_size, hidden_size, 1) self.bn_0 = CBatchNorm1d(c_dim, hidden_size) self.bn_1 = CBatchNorm1d(c_dim, hidden_size) self.bn_2 = CBatchNorm1d(c_dim, hidden_size) self.bn_3 = CBatchNorm1d(c_dim, hidden_size) self.bn_4 = CBatchNorm1d(c_dim, hidden_size) self.bn_5 = CBatchNorm1d(c_dim, hidden_size) self.fc_out = nn.Conv1d(hidden_size, 1, 1) if not leaky: self.actvn = F.relu else: self.actvn = lambda x: F.leaky_relu(x, 0.2)
def __init__(self, z_dim=128, c_dim=128, hidden_size=256, leaky=False): super().__init__() self.z_dim = z_dim if z_dim != 0: self.fc_z = tf.keras.layers.Dense(hidden_size) self.fc_p = tf.keras.layers.Conv1D(hidden_size, 1) self.fc_0 = tf.keras.layers.Conv1D(hidden_size) self.fc_1 = tf.keras.layers.Conv1D(hidden_size) self.fc_2 = tf.keras.layers.Conv1D(hidden_size) self.fc_3 = tf.keras.layers.Conv1D(hidden_size) self.fc_4 = tf.keras.layers.Conv1D(hidden_size) self.bn_0 = CBatchNorm1d(c_dim, hidden_size) self.bn_1 = CBatchNorm1d(c_dim, hidden_size) self.bn_2 = CBatchNorm1d(c_dim, hidden_size) self.bn_3 = CBatchNorm1d(c_dim, hidden_size) self.bn_4 = CBatchNorm1d(c_dim, hidden_size) self.bn_5 = CBatchNorm1d(c_dim, hidden_size) self.fc_out = tf.keras.layers.Dense(1, 1) if not leaky: self.actvn = tf.keras.layers.ReLU() else: self.actvn = tf.keras.layers.LeakyReLU(0.2)
def __init__(self, dim=3, z_dim=0, c_dim=128, hidden_size=256, n_blocks=5): super().__init__() self.z_dim = z_dim if z_dim != 0: self.fc_z = nn.Linear(z_dim, c_dim) self.conv_p = nn.Conv1d(dim, hidden_size, 1) self.blocks = nn.ModuleList( [CResnetBlockConv1d(c_dim, hidden_size) for i in range(n_blocks)]) self.bn = CBatchNorm1d(c_dim, hidden_size) self.conv_out = nn.Conv1d(hidden_size, 1, 1) self.actvn = nn.ReLU()
def __init__(self, z_dim=0, c_dim=128, hidden_size=256, n_blocks=5): super().__init__() self.z_dim = z_dim if z_dim != 0: self.fc_z = tf.keras.layers.Dense(c_dim) self.conv_p = tf.keras.layers.Conv1D(hidden_size, 1) self.blocks = [ CResnetBlockConv1d(c_dim, hidden_size) for i in range(n_blocks) ] # CHECK nn.ModuleList -> List self.bn = CBatchNorm1d(c_dim, hidden_size) self.conv_net = tf.keras.layers.Conv1D(1, 1) self.actvn = tf.keras.layers.ReLU()
def __init__(self, dim=3, z_dim=128, c_dim=128, hidden_size=256, leaky=False, legacy=False): super().__init__() self.z_dim = z_dim self.c_dim = c_dim p_hidden_size = 256 hidden_size = 128 if not z_dim == 0: self.fc_z = nn.Linear(z_dim, p_hidden_size) self.fc_p = nn.Conv1d(dim, p_hidden_size, 1) self.block0 = CResnetBlockConv1d(c_dim, p_hidden_size, size_out=hidden_size * 4, legacy=legacy) self.block1 = CResnetBlockConv1d(c_dim, hidden_size * 4 + p_hidden_size, size_out=hidden_size * 4, legacy=legacy) self.block2 = CResnetBlockConv1d(c_dim, hidden_size * 4 + p_hidden_size, size_out=hidden_size * 2, legacy=legacy) self.block3 = CResnetBlockConv1d(c_dim, hidden_size * 2 + p_hidden_size, size_out=hidden_size, legacy=legacy) if not legacy: self.bn = CBatchNorm1d(c_dim, hidden_size) else: self.bn = CBatchNorm1d_legacy(c_dim, hidden_size) self.fc_out = nn.Conv1d(hidden_size, 1, 1) if not leaky: self.actvn = nn.ReLU(inplace=True) else: self.actvn = lambda x: F.leaky_relu(x, 0.2, True)
def __init__(self, dim=3, z_dim=128, c_dim=128, hidden_size=256, leaky=False, legacy=False, n_classes=1, instance_loss=False): super().__init__() #print('using sigmoid') self.z_dim = z_dim if not z_dim == 0: self.fc_z = nn.Linear(z_dim, hidden_size) self.fc_p = nn.Conv1d(dim, hidden_size, 1) self.block0 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block1 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block2 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block3 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) self.block4 = CResnetBlockConv1d(c_dim, hidden_size, legacy=legacy) if not legacy: self.bn = CBatchNorm1d(c_dim, hidden_size) else: self.bn = CBatchNorm1d_legacy(c_dim, hidden_size) self.instance_loss = instance_loss self.fc_out = nn.Conv1d(hidden_size, n_classes, 1) self.fc_vote = None if self.instance_loss: self.fc_vote = nn.Conv1d(hidden_size, 3, 1) if not leaky: self.actvn = F.relu else: self.actvn = lambda x: F.leaky_relu(x, 0.2)