Пример #1
0
def scaleLin(im, k):
    '''Takes an image and a scale factor. Returns an image scaled using bilinear interpolation.
    '''
    out = io.constantIm(im.shape[0] * k, im.shape[1] * k, 0)
    for y, x in imIter(out):
        out[y, x] = interpolateLin(im, float(y)/k, float(x)/k, True)
    return out
Пример #2
0
def scaleNN(im, k):
    '''Takes an image and a scale factor. Returns an image scaled using nearest neighbor interpolation.
    '''
    out = io.constantIm(im.shape[0]*k, im.shape[1]*k, 0.0)
    for y, x in imIter(out):
        out[y,x]=im[clipY(im,round(y/k)), clipX(im,round(x/k))]
    return out
Пример #3
0
def stitchH(im1, im2, H1):
    '''Stitch im1 and im2 into a panorama. The resulting panorama should be in the coordinate system of im2, though 
    possibly extended to a larger image. That is, im2 should never appear distorted in the resulting panorama, only 
    possibly translated. Returns the stitched output (which may be larger than either input image).'''
    H = np.linalg.inv(H1)

    bbox1 = [[0,0], [im2.shape[0]-1, im2.shape[1]-1]]
    bbox2 = computeTransformedBBox(im1.shape, H)

    bbox = bboxUnion( bbox1, bbox2 )
    trans = translate( bbox )

    height = bbox[1][0] - bbox[0][0] + 1 
    width = bbox[1][1] - bbox[0][1] + 1

    out = io.constantIm( height, width, 0.0)

    ty = trans[0,2]
    tx = trans[1,2]
    out[ -ty:-ty+im2.shape[0], -tx:-tx+im2.shape[1] ] = im2

    Htrans = np.dot(H, trans)
    applyHomographyFast( im1, out, Htrans, True )

    return out
Пример #4
0
def painterly(im,
              texture,
              N=10000,
              size=50,
              noise=01.3,
              debug=False,
              imname=''):
    '''First paints at a coarse scale using all 1's for importance sampling, then paints again at size/4 scale using the sharpness map for importance sampling.'''

    out = io.constantIm(im.shape[0], im.shape[1])
    outCopy = None
    if debug:
        outCopy = out.copy()

    # first pass
    importance_first_pass = np.ones_like(im)
    singleScalePaint(im, out, importance_first_pass, texture, size, N, noise)
    if debug:
        io.imwrite(out, str(imname + "PainterlyFirstPassOnly.png"))

    # second pass
    importance_second_pass = helper.sharpnessMap(im)
    singleScalePaint(im, out, importance_second_pass, texture, size / 4, N,
                     noise)
    if debug:
        singleScalePaint(im, outCopy, importance_second_pass, texture,
                         size / 4, N, noise)
        io.imwrite(outCopy, str(imname + "PainterlySecondPassOnly.png"))

    return out
Пример #5
0
def warp(im, segmentsBefore, segmentsAfter, a=10, b=1, p=1):
    '''Takes an image, a list of before segments, a list of after segments, and the parameters a,b,p (see Beier)
    '''
    height = im.shape[0]
    width = im.shape[1]

    out = io.constantIm(height, width, 0.0)
    for y,x in imIter(out):
        X = np.array([y,x], dtype=np.float64)

        DSUM = np.array([0,0], dtype=np.float64)
        weightsum = 0

        for i in range(len(segmentsAfter)):
            (u,v) = segmentsAfter[i].uv(X)
            X_prime = segmentsBefore[i].uvtox(u,v)
            D = np.subtract(X_prime, X)
            dist = segmentsAfter[i].dist(X)
            w = weight(segmentsAfter[i], X)
            DSUM = np.add( DSUM, D*w )
            weightsum += w
        X_final = np.add( X, DSUM/float(weightsum) )
        
        pixel = interpolateLin(im, X_final[0], X_final[1])
        out[y,x] = pixel
    return out
Пример #6
0
def convolve(im, kernel):
    # Return an image filtered by kernel
    shiftY, shiftX = (int(kernel.shape[0] / 2), int(kernel.shape[1] / 2))
    im_out = io.constantIm(im.shape[0], im.shape[1], 0)
    for y, x in imIter(im_out):
        for yp, xp in imIter(kernel):
            im_out[y, x] += getEdgePadded(im, y + yp - shiftY, x + xp - shiftX) * kernel[yp, xp]
    return im_out
Пример #7
0
def scaleLin(im, k):
    '''Takes an image and a scale factor. Returns an image scaled using bilinear interpolation.
    '''
    (height, width, depth) = np.shape(im)
    img = io.constantIm(im.shape[0]*k, im.shape[1]*k, 0.0)
    for y, x in imIter(img):
        img[y][x] = interpolateLin(im, y/k, x/k, True)
    return img
Пример #8
0
def warpBy1(im, src_segment, dest_segment):
    h,w = im.shape[0:2]
    out = imageIO.constantIm(h, w, [0, 0, 0])
    for y, x in imIter(out):
        dest_point = np.array([y,x])
        y_p, x_p = transform(dest_point, dest_segment, src_segment)
        out[y,x] = edgePaddingAccessor(y_p, x_p, im)
    return interpolateLin(out, .5,  .5, accessor=edgePaddingAccessor)
Пример #9
0
def boxBlur(im, k):
    # Return a  blured image filtered by box filter
    shift = int(k / 2)
    factor = 1.0 / (k ** 2)
    im_out = io.constantIm(im.shape[0], im.shape[1], 0)
    for y, x in imIter(im_out):
        for yp, xp in [(a, b) for a in xrange(k) for b in xrange(k)]:
            im_out[y, x] += getEdgePadded(im, y + yp - shift, x + xp - shift) * factor
    return im_out
Пример #10
0
def interpolateLin(im, k_y, k_x, accessor=blackAccessor):   #k_y, k_x better than y, x, which is confusing.
    h, w = im.shape[0:2]
    out = imageIO.constantIm(h, w, 0.0)
    for y,x in imIter(im):
        y_avr= (accessor(y-1,x,im) + accessor(y+1,x,im))/2
        x_avr = (accessor(y,x-1,im) + accessor(y, x+1,im))/2
        pixel_vals = (y_avr*k_y + x_avr*k_x)
        out[y,x] = pixel_vals
    return out
Пример #11
0
def painterly(im, texture, N=10000, size=50, noise=0.3):
    '''First paints at a coarse scale using all 1's for importance sampling, then paints again at size/4 scale using the sharpness map for importance sampling.'''
    importanceLow = np.ones_like(im)
    outLow = io.constantIm( im.shape[0], im.shape[1], 0.0 )
    singleScalePaint(im, outLow, importanceLow, texture, size, N, noise)

    importanceHigh = helper.sharpnessMap(im)
    singleScalePaint(im, outLow, importanceHigh, texture, size/4, N, noise)

    return outLow
Пример #12
0
def scaleNN(im, k):
    '''Takes an image and a scale factor. Returns an image scaled using nearest neighbor interpolation.
    '''
    height = im.shape[0]
    width = im.shape[1]

    out = io.constantIm(height*k, width*k, 0.0)
    for y,x in imIter(out):
       out[y,x] = im[y/k, x/k]
    return out
Пример #13
0
def scaleNN(im, k):
    '''Takes an image and a scale factor. Returns an image scaled using nearest neighbor interpolation.
    '''
    out = io.constantIm(im.shape[0] * k, im.shape[1] * k, 0)
    for y, x in imIter(out):
        origY = clipY(im, int(round(y/k)))
        origX = clipX(im, int(round(x/k)))
        out[y, x] = pix(im, origY, origX)

    return out
Пример #14
0
def warpBy1(im, segmentBefore, segmentAfter):
    '''Takes an image, one before segment, and one after segment.
        Returns an image that has been warped according to the two segments.
    '''
    out = io.constantIm(im.shape[0], im.shape[1], 0)
    for y, x in imIter(out):
        u, v = segmentAfter.uv(np.array([y, x]))
        Xprime = segmentBefore.uvtox(u, v)
        out[y, x] = interpolateLin(im, Xprime[0], Xprime[1], True)
    return out
Пример #15
0
def merge2images(im1, im2, H):
    B=computeTransformedBBox(im1, linalg.inv(H))
    B=bboxUnion(B, array([[0.0, 0.0], 1.0*array(im2.shape[0:2])]))
    print 'bbox after union: ', B

    T=translate(B[0, 0], B[0, 1])
    
    out = imageIO.constantIm(B[1, 0]-B[0, 0], B[1, 1]-B[0, 1], 0)
    applyHomography(im2, out, T)
    applyHomography(im1, out, dot(H, T))       
Пример #16
0
def bilaYUV(im, sigmaRange, sigmaY, sigmaUV):
    # 6.865 only: filter YUV differently
    imYUV = rgb2yuv(im)
    bilateralY = bilateral(imYUV, sigmaRange, sigmaY)
    bilateralUV = bilateral(imYUV, sigmaRange, sigmaUV)
    im_out = io.constantIm(im.shape[0], im.shape[1], 0)

    for y, x in imIter(im_out):
        im_out[y, x] = np.array([bilateralY[y, x, 0], bilateralUV[y, x, 1], bilateralUV[y, x, 2]])

    return yuv2rgb(im_out)
Пример #17
0
def orientedPaint(im, texture, N=7000, size=50, noise=0.3):
    '''same as painterly but computes and uses the local orientation information to orient strokes.'''
    importanceLow = np.ones_like(im)
    outLow = io.constantIm( im.shape[0], im.shape[1], 0.0 )
    thetas = computeAngles(im)
    singleScaleOrientedPaint(im, outLow, thetas, importanceLow, texture, size, N, noise)

    importanceHigh = helper.sharpnessMap(im)
    singleScaleOrientedPaint(im, outLow, thetas, importanceHigh, texture, size/4, N, noise)

    return outLow
Пример #18
0
def scaleNN(im, k):
    h, w = im.shape[0:2]
    out = imageIO.constantIm(h*k, w*k, 0.0)
    for y,x in imIter(out):
        try:
            y_orig, x_orig = int(y/k), int(x/k)
            out[y,x] = im[y_orig, x_orig]
        except: #only for testing purposes
            print y_orig, x_orig
            
    return out
Пример #19
0
def basicDemosaic(raw, offsetGreen=0, offsetRedY=1, offsetRedX=1, offsetBlueY=0, offsetBlueX=0):
    '''takes a raw image and a bunch of offsets. Returns an rgb image computed with our basic techniche.'''

    height = raw.shape[0]
    width = raw.shape[1]
    out = io.constantIm(height, width, [0,0,0])

    out[:,:,0] = basicRorB(raw, offsetRedY, offsetRedX)
    out[:,:,1] = basicGreen(raw) #use default offsetGreen
    out[:,:,2] = basicRorB(raw, offsetBlueY, offsetBlueX)

    return out
Пример #20
0
def edgeBasedGreenDemosaic(raw, offsetGreen=0, offsetRedY=1, offsetRedX=1, offsetBlueY=0, offsetBlueX=0):
    '''same as basicDemosaic except it uses the edge based technique to produce the green channel.'''

    height = raw.shape[0]
    width = raw.shape[1]
    out = io.constantIm(height, width, [0,0,0])

    out[:,:,0] = basicRorB(raw, offsetRedY, offsetRedX)
    out[:,:,1] = edgeBasedGreen(raw) #use default offsetGreen
    out[:,:,2] = basicRorB(raw, offsetBlueY, offsetBlueX)

    return out
Пример #21
0
def stitch(im1, im2, listOfPairs):
    H = computeHomography(listOfPairs)  # pairs from 1->2
    bbox = computeTransformedBBox(im1, H)
    t_m = translate(bbox)
    t_m_inv = np.linalg.inv(t_m)
    
    h, w = bbox[1][0] - bbox[0][0], bbox[1][1] - bbox[0][1]
    out = imageIO.constantIm(h, w, [0, 0, 0.0])   
    applyHomography(im1, out, t_m, bilinear=True)
    comb = t_m+H
#    applyhomography(im2, out, comb, bilinear=True)
    return out
Пример #22
0
def improvedDemosaic(raw, offsetGreen=0, offsetRedY=1, offsetRedX=1, offsetBlueY=0, offsetBlueX=0):
    '''Same as basicDemosaic but uses edgeBasedGreen and greenBasedRorB.'''

    height = raw.shape[0]
    width = raw.shape[1]
    out = io.constantIm(height, width, [0,0,0])

    green = edgeBasedGreen(raw) #use default offsetGreen
    out[:,:,0] = greenBasedRorB(raw, green, offsetRedY, offsetRedX)
    out[:,:,1] = green
    out[:,:,2] = greenBasedRorB(raw, green, offsetBlueY, offsetBlueX)

    return out
Пример #23
0
def epiSlice(LF, y):
    '''Takes a light field. Returns the epipolar slice with constant v=(nv/2) and constant y (input argument).'''
    nv = LF.shape[0]
    nu = LF.shape[1]
    ny = LF.shape[2]
    nx = LF.shape[3]
    v=(nv/2)

    out = io.constantIm( nu, nx, 0.0)
    for x in range(nx):
        for u in range(nu):
            out[u, x] = LF[v,u,y,x]
    return out
Пример #24
0
def rotate(im, theta):
    '''takes an image and an angle in radians as input
        returns an image of the same size and rotated by theta
    '''
    out = io.constantIm(im.shape[0], im.shape[1], 0)
    halfX = int(im.shape[1] / 2)
    halfY = int(im.shape[0] / 2)
    inverseRotateM = np.array([[math.cos(theta), -math.sin(theta)],
                               [math.sin(theta), math.cos(theta)]])
    for y, x in imIter(out):
        origImgPos = np.dot(inverseRotateM, np.array([x - halfX, y - halfY])) + np.array([halfX, halfY])
        out[y, x] = interpolateLin(im, origImgPos[1], origImgPos[0])
    return out
Пример #25
0
def split(raw):
    '''splits one of Sergei's images into a 3-channel image with height that is floor(height_of_raw/3.0). Returns the 3-channel image.'''

    width = raw.shape[1]
    height = raw.shape[0]
    crop = math.floor(height/3.0)

    out = io.constantIm(crop, width, [0,0,0])

    out[:,:,0] = raw[2*crop:3*crop,:]
    out[:,:,1] = raw[crop:2*crop,:]
    out[:,:,2] = raw[:crop,:]

    return out
Пример #26
0
def apertureView(LF):
    '''Takes a light field, returns 'out,' an image with nx*ny sub-pictures representing the value of each pixel in each of the nu*nv views.'''
    nv = LF.shape[0]
    nu = LF.shape[1]
    ny = LF.shape[2]
    nx = LF.shape[3]
  
    out = io.constantIm( nv*ny, nu*nx, 0.0)
    for y in range(ny):
        for x in range(nx):
            for v in range(nv):
                for u in range(nu):
                    out[nv*y+v,nu*x+u] = LF[v,u,y,x]
    return out
Пример #27
0
def warpBy1(im, segmentBefore, segmentAfter):
    '''Takes an image, one before segment, and one after segment. 
        Returns an image that has been warped according to the two segments.
    '''
    height = im.shape[0]
    width = im.shape[1]

    out = io.constantIm(height, width, 0.0)
    for y,x in imIter(out):
        X = np.array([y,x], dtype=np.float64) 
        (u,v) = segmentAfter.uv(X)
        X_prime = segmentBefore.uvtox(u,v)
        pixel = interpolateLin(im, X_prime[0], X_prime[1])
        out[y,x] = pixel
    return out
Пример #28
0
def merge2images(im1, im2, H):
    B = computeTransformedBBox(im1, np.linalg.inv(H))
    B = bboxUnion(B, np.array([[0.0, 0.0], 1.0 * np.array(im2.shape[0:2])]))

    T = translate(B[0, 0], B[0, 1])

    out = imageIO.constantIm(B[1, 0] - B[0, 0], B[1, 1] - B[0, 1], 0)

    ws1 = calcLinBlendWeights(im1)
    ws2 = calcLinBlendWeights(im2)

    H2 = np.dot(H, T)
    applyDoubleHomography(im1, im2, ws1, ws2, out, T, H2, bilinear=False)
    #    applyHomography(im1, out, T)
    #    applyHomography(im2,  out, np.dot(H, T))
    return out
Пример #29
0
def compositeNImages(listOfImages, listOfH, listOfWeights=None, twoScale=False):
    '''Computes the composite image. listOfH is of the form returned by computeNHomographies. Hint: You will need to 
    deal with bounding boxes and translations again in this function.'''
    bbox = getOuterBBox( listOfImages, listOfH )
    trans = translate(bbox)

    height = bbox[1][0] - bbox[0][0] + 1 
    width = bbox[1][1] - bbox[0][1] + 1

    out = io.constantIm( height, width, 0.0)

    if (listOfWeights is not None):
        weightSum = io.constantIm( height, width, 0.0)

        if (twoScale):
            sigmaG = 2.0
            L_low = map(lowFreqIm, listOfImages, [sigmaG] * len(listOfImages))
            L_high = map(highFreqIm, listOfImages, [sigmaG] * len(listOfImages))
            weightSumL = io.constantIm( height, width, 0.0)
            weightSumH = io.constantIm( height, width, 0.0)
            outL = io.constantIm( height, width, 0.0)
            outH = io.constantIm( height, width, 0.0)

    for i in range(len(listOfH)):

        H = np.dot( listOfH[i], trans)

        if (listOfWeights is not None):
            w = listOfWeights[i]
            imW = listOfImages[i].copy()
            imW[:,:,0] = w
            imW[:,:,1] = w
            imW[:,:,2] = w

            if( twoScale ):
                imL = L_low[i]
                applyHomographyFastBlended(imL, outL, H, True, imW, weightSumL)
                imH = L_high[i]
                applyHomographyFastBlended(imH, outH, H, True, imW, weightSumH, True)

            else:
                im = listOfImages[i]
                applyHomographyFastBlended(im, out, H, True, imW, weightSum)
        else:
            applyHomographyFast(listOfImages[i], out, H, True)

    if (listOfWeights is not None):
        if( twoScale ):

            #io.imwrite(weightSumL, 'debugWeightsLow.png', 1.0)
            #io.imwrite(weightSumH, 'debugWeightsHigh.png', 1.0)

            out = outL + outH
  
    return out
Пример #30
0
def scaleBiquadratic(im, k):
    '''Takes an image and a scale factor. Returns an image scaled using bilinear interpolation.
    '''
    height = im.shape[0]
    width = im.shape[1]
    newHeight = height*k
    newWidth = width*k

    out = io.constantIm(newHeight, newWidth, 0.0)
    for y,x in imIter(out):
        x_float = x/float(newWidth) * (width)
        y_float = y/float(newHeight) * (height)

        pix = interpolateBiquad(im, y_float, x_float)
        out[y,x] = pix
    return out
Пример #31
0
def orientedPaint(im, texture, N=7000, size=50, noise=0.3):
    '''same as painterly but computes and uses the local orientation information to orient strokes.'''

    out = io.constantIm(im.shape[0], im.shape[1])

    thetas = computeAngles(im)

    # first pass
    importance_first_pass = np.ones_like(im)
    singleScaleOrientedPaint(im, out, thetas, importance_first_pass, texture,
                             size, N, noise)

    # second pass
    importance_second_pass = helper.sharpnessMap(im)
    singleScaleOrientedPaint(im, out, thetas, importance_second_pass, texture,
                             size / 4, N, noise)

    return out
Пример #32
0
def rotate(im, theta):
    '''takes an image and an angle in radians as input
        returns an image of the same size and rotated by theta
    '''

    h = im.shape[0]
    w = im.shape[1]
    center = (int(h/2), int(w/2))

    out = io.constantIm(h, w, 0.0)

    for y,x in imIter(out):
       tx = ((x-center[1])*math.cos(theta) - (y-center[0])*math.sin(theta) + center[1])
       ty = ((x-center[1])*math.sin(theta) + (y-center[0])*math.cos(theta) + center[0])
       
       pix = interpolateLin(im, ty, tx, True)
       out[y,x] = pix
    return out