Пример #1
0
def extractFaces1(filename):
    global faceCnt
    preprocessImage(filename)

    face_locations = changeboxtype(
        face_cascade.detectMultiScale(cv2.imread(tempFile), 1.7, 5))

    print(face_locations)

    # img = Image.open(tempFile)
    # img.save(savePath+str(faceCnt)+'.jpg')
    # faceCnt+=1

    for face_location in face_locations:
        cropImage(tempFile, face_location, True,
                  savePath + str(faceCnt) + '.jpg')
        faceCnt += 1
Пример #2
0
def recognizeFacesInImage(filename):
    global data, names

    preprocessImage(filename)

    img = cv2.imread(tempFile)
    rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    boxes = face_recognition.face_locations(rgb)
    encodings = face_recognition.face_encodings(rgb, boxes)

    faces = []
    if len(encodings) != 0:
        faces = knn.predict(encodings)
    faces = list(set(faces))

    print(faces)
    return faces
Пример #3
0
def recognizeFacesInImage(filename):
    global data, names, totalFreq

    preprocessImage(filename)

    img = cv2.imread(tempFile)
    rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    boxes = face_recognition.face_locations(rgb)
    encodings = face_recognition.face_encodings(rgb, boxes)

    faces = []
    for encoding in encodings:
        matches = face_recognition.compare_faces(data['encodings'], encoding)

        freq = {}
        percent = {}

        for name in names:
            freq[name] = 0

        for i in range(0, len(matches)):
            if (matches[i]):
                freq[data['names'][i]] += 1

        for name in names:
            percent[name] = float('%.2f' %
                                  (freq[name] / totalFreq[name] * 100))

        curMax = 90
        curName = 'Unknown'
        for name in names:
            if percent[name] >= curMax:
                curMax = percent[name]
                curName = name

        if (curName in faces) == False:
            faces.append(curName)
    print(faces)

    return faces
Пример #4
0
def recognizeSingleFace(filename):
    global knn
    global data, names

    preprocessImage(filename)

    img = cv2.imread(tempFile)
    rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    boxes = face_recognition.face_locations(rgb)
    encoding = face_recognition.face_encodings(rgb, boxes)

    if len(encoding) == 0:
        return 'Unknown'

    encoding = encoding[0]

    face = knn.predict([encoding])[0]
    # prob = knn.predict_proba([encoding])[0]
    # print(prob)
    return face
Пример #5
0
def recognizeSingleFace(filename):
    global data, names, totalFreq

    preprocessImage(filename)

    img = cv2.imread(tempFile)
    rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    boxes = face_recognition.face_locations(rgb)
    encoding = face_recognition.face_encodings(rgb, boxes)

    if len(encoding) == 0:
        return 'Unknown'

    encoding = encoding[0]
    matches = face_recognition.compare_faces(data['encodings'], encoding)

    freq = {}
    percent = {}

    for name in names:
        freq[name] = 0

    for i in range(0, len(matches)):
        if (matches[i]):
            freq[data['names'][i]] += 1

    for name in names:
        percent[name] = float('%.2f' % (freq[name] / totalFreq[name] * 100))

    curMax = 90
    curName = 'Unknown'
    for name in names:
        if percent[name] >= curMax:
            curMax = percent[name]
            curName = name

    face = curName

    return face
Пример #6
0
def extractFaces2(filename):
    global faceCnt
    preprocessImage(filename)

    # img = Image.open(tempFile)
    # scale = 0.5
    # width, height = img.size
    # newsize = (int(width*scale), int(height*scale))
    # img = img.resize(newsize)
    # img.save(tempFile)

    image = face_recognition.load_image_file(tempFile)
    face_locations = face_recognition.face_locations(image)

    print(face_locations)

    # img = Image.open(tempFile)
    # img.save(savePath+str(faceCnt)+'.jpg')
    # faceCnt+=1

    for face_location in face_locations:
        cropImage(tempFile, face_location, True,
                  savePath + str(faceCnt) + '.jpg')
        faceCnt += 1