Пример #1
0
def main(**kwargs):
    from types import SimpleNamespace
    _ = SimpleNamespace(**kwargs)

    loader = ImageLoader(_.folder)
    data = loader.setup(datalen=_.datalen)
    dcgan = DCGAN(loader.shape_x, loader.shape_y, loader.channels, data)
    dcgan.train(epochs=_.epochs, batch_size=_.batch_size, save_interval=50)
Пример #2
0
    def __init__(self):
        self.img_rows = 256
        self.img_cols = 256
        self.channel = 3

        # self.x_train = input_data.read_data_sets("mnist",\
        # 	one_hot=True).train.images
        # self.x_train = self.x_train.reshape(-1, self.img_rows,\
        # 	self.img_cols, 1).astype(np.float32)
        # self.x_train = self.x_train.reshape(-1, 28,\
        # 	28, 1).astype(np.float32)

        folder = 'C:/Users/lhrfxg/workspace/1902_fastai/datasets/codalab/'

        from image_loader import ImageLoader
        loader = ImageLoader(folder)
        data = loader.setup(datalen=100)
        self.x_train = np.array(data)
        self.DCGAN = DCGAN()
        self.discriminator = self.DCGAN.discriminator_model()
        self.adversarial = self.DCGAN.adversarial_model()
        self.generator = self.DCGAN.generator()