def main(): video = VideoCapture(video_sources.video_2) workArea = WorkAreaView(video_sources.video_2_work_area_markers) vc = VideoController(10, 'pause') (video_wnd, bin_diff_wnd, gray_diff_wnd, colorDiffWnd, learned_BG_wnd) = Wnd.create('video', 'binary diff', 'gray diff', 'color diff', 'Learned BG') colorAbsDiffWnd = Wnd('color_abs_diff') segmentedWnd = Wnd('segmented') segmenter = Segmenter() frames_iter = workArea.skip_non_area(video.frames()) motionDetector = MotionDetector(next(frames_iter)[0], 3) backgroundModel = BackgroundModel(15) prevBackground = None for frame, _ in frames_iter: motionDetector.detect(frame) if motionDetector.motionEnded(): # calc fgMask mask, gray_diff, color_diff, colorAbsDiff = calcForegroundMask( prevBackground, frame) # bin_diff_wnd.imshow(resize(mask, 0.5)) bin_diff_wnd.imshow(cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)) # gray_diff_wnd.imshow(resize(gray_diff, .5)) # colorDiffWnd.imshow(resize(color_diff, .5)) # colorAbsDiffWnd.imshow(resize(colorAbsDiff, .5)) markers, objectsCount = segmenter.segment(mask) segmentedWnd.imshow( resize(Segmenter.markersToDisplayImage(markers, objectsCount), .5)) backgroundModel = BackgroundModel(15) if motionDetector.isSilence(): backgroundModel.learn(frame, foregroundMask=None) learned_BG_wnd.imshow(resize(backgroundModel.learned, .5)) if motionDetector.motionStarted(): prevBackground = backgroundModel.learned backgroundModel = None learned_BG_wnd.imshow(resize(prevBackground, .5)) # VIS vis_img = motionDetector.indicateCurrentState(frame.copy()) vis_img = utils.put_frame_pos(vis_img, video.frame_pos(), xy=(2, 55)) video_wnd.imshow(vis_img) # bin_diff_wnd.imshow(resize(motionDetector.bin_diff, .5)) # gray_diff_wnd.imshow(resize(motionDetector.gray_diff, .5)) # VIS END if vc.wait_key() == 27: break video.release()
def main(): video = VideoCapture(video_sources.video_6) work_area = WorkAreaView(video_sources.video_6_work_area_markers) vc = VideoController(10, 'pause') (video_wnd, bin_diff_wnd, gray_diff_wnd, frame0_diff_wnd, learned_BG_wnd) = Wnd.create('video', 'binary diff', 'gray diff', 'diff with frame0', 'Learned BG') frames_iter = work_area.skip_non_area(video.frames()) motion_detector = MotionDetector(next(frames_iter)[0], 3) background = BackgroundModel(motion_detector, 15) for frame, _ in frames_iter: motion_detector.detect(frame) if not background.done: background.learn() else: if motion_detector.motion_ended(): frame0_diff = cv2.absdiff(background.learned, frame) gray_of_color_diff = Helper.to_gray(frame0_diff) frame0_diff_wnd.imshow( resize( np.hstack( (frame0_diff, Helper.to_bgr(gray_of_color_diff))), .5)) _, binary = cv2.threshold(gray_of_color_diff, 35, 255, cv2.THRESH_BINARY) cv2.imshow('1 binary', resize(binary, .5)) # VIS if background.done: learned_BG_wnd.imshow(resize(background.learned, 1)) vis_img = motion_detector.put_current_state(frame.copy()) vis_img = utils.put_frame_pos(vis_img, video.frame_pos(), xy=(2, 55)) video_wnd.imshow(vis_img) # bin_diff_wnd.imshow(resize(motion_detector.bin_diff, .5)) # gray_diff_wnd.imshow(resize(motion_detector.gray_diff, .5)) # VIS END if vc.wait_key() == 27: break video.release()
def readbtn(self, obj): Window.screenshot(name='digit.png') image = resizer.resize(f"digit0001.png") image = 255. - np.mean(image, axis=2).reshape(1, -1) prediction = model.predict_number(image) print(prediction) self.resultlbl.text = f"[color=3333ff][b]result: {prediction}[/b][/color]" removeFiles()
def small_app_icon_path(self): app_icon_path = self.app_icon_path() small_icon_path = os.path.join(os.path.dirname(app_icon_path), "small_icon.png") image_resizer.resize(app_icon_path, small_icon_path, 114, 114) return small_icon_path
from colorthief import ColorThief import time import image_resizer def get_dominant_colors(img_path): color_thief = ColorThief(img_path) # get the dominant color dominant_color = color_thief.get_color(quality=1) palette = color_thief.get_palette(color_count=5) print(palette) file_name = "/bighdd/Downloads/vannaya.txt" with open(file_name) as f: images = f.readlines() start_time = time.time() for image in images: try: image_resizer.resize(image.rstrip(), 100) print("--- %s resized ---" % (image)) except: print("Не смогли сресайзить") print("--- %s seconds ---" % (time.time() - start_time))