def experiment(exp, arch, rnd_init, img_size, confidence_thresh, teacher_alpha,
               unsup_weight, cls_balance, cls_balance_loss, learning_rate,
               pretrained_lr_factor, fix_layers, double_softmax, use_dropout,
               src_scale_u_range, src_scale_x_range, src_scale_y_range,
               src_affine_std, src_xlat_range, src_rot_std, src_hflip,
               src_intens_scale_range, src_colour_rot_std, src_colour_off_std,
               src_greyscale, src_cutout_prob, src_cutout_size,
               tgt_scale_u_range, tgt_scale_x_range, tgt_scale_y_range,
               tgt_affine_std, tgt_xlat_range, tgt_rot_std, tgt_hflip,
               tgt_intens_scale_range, tgt_colour_rot_std, tgt_colour_off_std,
               tgt_greyscale, tgt_cutout_prob, tgt_cutout_size, constrain_crop,
               img_pad_width, num_epochs, batch_size, epoch_size, seed,
               log_file, skip_epoch_eval, result_file, record_history,
               model_file, hide_progress_bar, subsetsize, subsetseed, device,
               num_threads):
    settings = locals().copy()

    if rnd_init:
        if fix_layers != '':
            print('`rnd_init` and `fix_layers` are mutually exclusive')
            return

    if epoch_size not in {'source', 'target'}:
        try:
            epoch_size = int(epoch_size)
        except ValueError:
            print(
                'epoch_size should be an integer, \'source\', or \'target\', not {}'
                .format(epoch_size))
            return

    import os
    import sys
    import pickle
    import cmdline_helpers

    fix_layers = [lyr.strip() for lyr in fix_layers.split(',')]

    if log_file == '':
        log_file = 'output_aug_log_{}.txt'.format(exp)
    elif log_file == 'none':
        log_file = None

    if log_file is not None:
        if os.path.exists(log_file):
            print('Output log file {} already exists'.format(log_file))
            return

    src_intens_scale_range_lower, src_intens_scale_range_upper = cmdline_helpers.colon_separated_range(
        src_intens_scale_range)
    tgt_intens_scale_range_lower, tgt_intens_scale_range_upper = cmdline_helpers.colon_separated_range(
        tgt_intens_scale_range)
    src_scale_u_range = cmdline_helpers.colon_separated_range(
        src_scale_u_range)
    tgt_scale_u_range = cmdline_helpers.colon_separated_range(
        tgt_scale_u_range)
    src_scale_x_range = cmdline_helpers.colon_separated_range(
        src_scale_x_range)
    tgt_scale_x_range = cmdline_helpers.colon_separated_range(
        tgt_scale_x_range)
    src_scale_y_range = cmdline_helpers.colon_separated_range(
        src_scale_y_range)
    tgt_scale_y_range = cmdline_helpers.colon_separated_range(
        tgt_scale_y_range)

    import time
    import tqdm
    import math
    import tables
    import numpy as np
    from batchup import data_source, work_pool
    import image_dataset, visda17_dataset, office_dataset
    import network_architectures
    import augmentation
    import image_transforms
    from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
    import torch, torch.cuda
    from torch import nn
    from torch.nn import functional as F
    import optim_weight_ema

    if hide_progress_bar:
        progress_bar = None
    else:
        progress_bar = tqdm.tqdm

    with torch.cuda.device(device):
        pool = work_pool.WorkerThreadPool(num_threads)

        n_chn = 0
        half_batch_size = batch_size // 2

        if arch == '':
            if exp in {'train_val', 'train_test'}:
                arch = 'resnet50'

        if rnd_init:
            mean_value = np.array([0.5, 0.5, 0.5])
            std_value = np.array([0.5, 0.5, 0.5])
        else:
            mean_value = np.array([0.485, 0.456, 0.406])
            std_value = np.array([0.229, 0.224, 0.225])

        img_shape = (img_size, img_size)
        img_padding = (img_pad_width, img_pad_width)

        if exp == 'visda_train_val':
            d_source = visda17_dataset.TrainDataset(img_size=img_shape,
                                                    range01=True,
                                                    rgb_order=True)
            d_target = visda17_dataset.ValidationDataset(img_size=img_shape,
                                                         range01=True,
                                                         rgb_order=True)
        elif exp == 'visda_train_test':
            d_source = visda17_dataset.TrainDataset(img_size=img_shape,
                                                    range01=True,
                                                    rgb_order=True)
            d_target = visda17_dataset.TestDataset(img_size=img_shape,
                                                   range01=True,
                                                   rgb_order=True)

            if not skip_epoch_eval:
                print('WARNING: setting skip_epoch_eval to True')
                skip_epoch_eval = True
        elif exp == 'office_amazon_dslr':
            d_source = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
        elif exp == 'office_amazon_webcam':
            d_source = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_dslr_amazon':
            d_source = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
            d_target = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_dslr_webcam':
            d_source = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
            d_target = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_webcam_amazon':
            d_source = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_webcam_dslr':
            d_source = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
        else:
            print('Unknown experiment type \'{}\''.format(exp))
            return

        # Tensorboard log

        # Subset
        source_indices, target_indices, n_src, n_tgt = image_dataset.subset_indices(
            d_source, d_target, subsetsize, subsetseed)

        #
        # Result file
        #

        if result_file != '':
            cmdline_helpers.ensure_containing_dir_exists(result_file)
            h5_filters = tables.Filters(complevel=9, complib='blosc')
            f_target_pred = tables.open_file(result_file, mode='w')
            g_tgt_pred = f_target_pred.create_group(f_target_pred.root,
                                                    'target_pred_y',
                                                    'Target prediction')
            if record_history:
                arr_tgt_pred_history = f_target_pred.create_earray(
                    g_tgt_pred,
                    'y_prob_history',
                    tables.Float32Atom(), (0, n_tgt, d_target.n_classes),
                    filters=h5_filters)
            else:
                arr_tgt_pred_history = None
        else:
            arr_tgt_pred_history = None
            f_target_pred = None
            g_tgt_pred = None

        n_classes = d_source.n_classes

        print('Loaded data')

        net_class = network_architectures.get_build_fn_for_architecture(arch)

        student_net = net_class(n_classes, img_size, use_dropout,
                                not rnd_init).cuda()
        teacher_net = net_class(n_classes, img_size, use_dropout,
                                not rnd_init).cuda()
        student_params = list(student_net.parameters())
        teacher_params = list(teacher_net.parameters())
        for param in teacher_params:
            param.requires_grad = False

        if rnd_init:
            new_student_optimizer = torch.optim.Adam(student_params,
                                                     lr=learning_rate)
            pretrained_student_optimizer = None
        else:
            named_params = list(student_net.named_parameters())
            new_params = []
            pretrained_params = []
            for name, param in named_params:
                if name.startswith('new_'):
                    new_params.append(param)
                else:
                    fix = False
                    for lyr in fix_layers:
                        if name.startswith(lyr + '.'):
                            fix = True
                            break
                    if not fix:
                        pretrained_params.append(param)
                    else:
                        print('Fixing param {}'.format(name))
                        param.requires_grad = False

            new_student_optimizer = torch.optim.Adam(new_params,
                                                     lr=learning_rate)
            if len(pretrained_params) > 0:
                pretrained_student_optimizer = torch.optim.Adam(
                    pretrained_params, lr=learning_rate * pretrained_lr_factor)
            else:
                pretrained_student_optimizer = None
        teacher_optimizer = optim_weight_ema.WeightEMA(teacher_params,
                                                       student_params,
                                                       alpha=teacher_alpha)
        classification_criterion = nn.CrossEntropyLoss()

        print('Built network')

        # Image augmentation

        src_aug = augmentation.ImageAugmentation(
            src_hflip,
            src_xlat_range,
            src_affine_std,
            rot_std=src_rot_std,
            intens_scale_range_lower=src_intens_scale_range_lower,
            intens_scale_range_upper=src_intens_scale_range_upper,
            colour_rot_std=src_colour_rot_std,
            colour_off_std=src_colour_off_std,
            greyscale=src_greyscale,
            scale_u_range=src_scale_u_range,
            scale_x_range=src_scale_x_range,
            scale_y_range=src_scale_y_range,
            cutout_probability=src_cutout_prob,
            cutout_size=src_cutout_size)

        tgt_aug = augmentation.ImageAugmentation(
            tgt_hflip,
            tgt_xlat_range,
            tgt_affine_std,
            rot_std=tgt_rot_std,
            intens_scale_range_lower=tgt_intens_scale_range_lower,
            intens_scale_range_upper=tgt_intens_scale_range_upper,
            colour_rot_std=tgt_colour_rot_std,
            colour_off_std=tgt_colour_off_std,
            greyscale=tgt_greyscale,
            scale_u_range=tgt_scale_u_range,
            scale_x_range=tgt_scale_x_range,
            scale_y_range=tgt_scale_y_range,
            cutout_probability=tgt_cutout_prob,
            cutout_size=tgt_cutout_size)

        test_aug = augmentation.ImageAugmentation(
            tgt_hflip,
            tgt_xlat_range,
            0.0,
            rot_std=0.0,
            scale_u_range=tgt_scale_u_range,
            scale_x_range=tgt_scale_x_range,
            scale_y_range=tgt_scale_y_range)

        border_value = int(np.mean(mean_value) * 255 + 0.5)

        sup_xf = image_transforms.Compose(
            image_transforms.ScaleCropAndAugmentAffine(img_shape, img_padding,
                                                       True, src_aug,
                                                       border_value,
                                                       mean_value, std_value),
            image_transforms.ToTensor(),
        )

        if constrain_crop >= 0:
            unsup_xf = image_transforms.Compose(
                image_transforms.ScaleCropAndAugmentAffinePair(
                    img_shape, img_padding, constrain_crop, True, tgt_aug,
                    border_value, mean_value, std_value),
                image_transforms.ToTensor(),
            )
        else:
            unsup_xf = image_transforms.Compose(
                image_transforms.ScaleCropAndAugmentAffine(
                    img_shape, img_padding, True, tgt_aug, border_value,
                    mean_value, std_value),
                image_transforms.ToTensor(),
            )

        test_xf = image_transforms.Compose(
            image_transforms.ScaleAndCrop(img_shape, img_padding, False),
            image_transforms.ToTensor(),
            image_transforms.Standardise(mean_value, std_value),
        )

        test_xf_aug_mult = image_transforms.Compose(
            image_transforms.ScaleCropAndAugmentAffineMultiple(
                16, img_shape, img_padding, True, test_aug, border_value,
                mean_value, std_value),
            image_transforms.ToTensorMultiple(),
        )

        if constrain_crop >= 0:

            def augment(X_sup, y_sup, X_tgt):
                X_sup = sup_xf(X_sup)[0]
                X_unsup_both = unsup_xf(X_tgt)[0]
                X_unsup_stu = X_unsup_both[:len(X_tgt)]
                X_unsup_tea = X_unsup_both[len(X_tgt):]
                return X_sup, y_sup, X_unsup_stu, X_unsup_tea
        else:

            def augment(X_sup, y_sup, X_tgt):
                X_sup = sup_xf(X_sup)[0]
                X_unsup_stu = unsup_xf(X_tgt)[0]
                X_unsup_tea = unsup_xf(X_tgt)[0]
                return X_sup, y_sup, X_unsup_stu, X_unsup_tea

        cls_bal_fn = network_architectures.get_cls_bal_function(
            cls_balance_loss)

        def compute_aug_loss(stu_out, tea_out):
            # Augmentation loss
            conf_tea = torch.max(tea_out, 1)[0]
            conf_mask = torch.gt(conf_tea, confidence_thresh).float()

            d_aug_loss = stu_out - tea_out
            aug_loss = d_aug_loss * d_aug_loss

            aug_loss = torch.mean(aug_loss, 1) * conf_mask

            # Class balance loss
            if cls_balance > 0.0:
                # Average over samples to get average class prediction
                avg_cls_prob = torch.mean(stu_out, 0)
                # Compute loss
                equalise_cls_loss = cls_bal_fn(avg_cls_prob,
                                               float(1.0 / n_classes))

                equalise_cls_loss = torch.mean(equalise_cls_loss) * n_classes

                equalise_cls_loss = equalise_cls_loss * torch.mean(
                    conf_mask, 0)
            else:
                equalise_cls_loss = None

            return aug_loss, conf_mask, equalise_cls_loss

        _one = torch.autograd.Variable(
            torch.from_numpy(np.array([1.0]).astype(np.float32)).cuda())

        def f_train(X_sup, y_sup, X_unsup0, X_unsup1):
            X_sup = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            y_sup = torch.autograd.Variable(
                torch.from_numpy(y_sup).long().cuda())
            X_unsup0 = torch.autograd.Variable(
                torch.from_numpy(X_unsup0).cuda())
            X_unsup1 = torch.autograd.Variable(
                torch.from_numpy(X_unsup1).cuda())

            if pretrained_student_optimizer is not None:
                pretrained_student_optimizer.zero_grad()
            new_student_optimizer.zero_grad()
            student_net.train(mode=True)
            teacher_net.train(mode=True)

            sup_logits_out = student_net(X_sup)
            student_unsup_logits_out = student_net(X_unsup0)
            student_unsup_prob_out = F.softmax(student_unsup_logits_out)
            teacher_unsup_logits_out = teacher_net(X_unsup1)
            teacher_unsup_prob_out = F.softmax(teacher_unsup_logits_out)

            # Supervised classification loss
            if double_softmax:
                clf_loss = classification_criterion(F.softmax(sup_logits_out),
                                                    y_sup)
            else:
                clf_loss = classification_criterion(sup_logits_out, y_sup)

            aug_loss, conf_mask, cls_bal_loss = compute_aug_loss(
                student_unsup_prob_out, teacher_unsup_prob_out)

            conf_mask_count = torch.sum(conf_mask)

            unsup_loss = torch.mean(aug_loss)
            loss_expr = clf_loss + unsup_loss * unsup_weight
            if cls_bal_loss is not None:
                loss_expr = loss_expr + cls_bal_loss * cls_balance * unsup_weight

            loss_expr.backward()
            if pretrained_student_optimizer is not None:
                pretrained_student_optimizer.step()
            new_student_optimizer.step()
            teacher_optimizer.step()

            n_samples = X_sup.size()[0]

            mask_count = conf_mask_count.data.cpu()[0]

            outputs = [
                float(clf_loss.data.cpu()[0]) * n_samples,
                float(unsup_loss.data.cpu()[0]) * n_samples, mask_count
            ]
            return tuple(outputs)

        print('Compiled training function')

        def f_pred_src(X_sup):
            X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            teacher_net.train(mode=False)
            return (F.softmax(teacher_net(X_var)).data.cpu().numpy(), )

        def f_pred_tgt(X_sup):
            X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            teacher_net.train(mode=False)
            return (F.softmax(teacher_net(X_var)).data.cpu().numpy(), )

        def f_pred_tgt_mult(X_sup):
            teacher_net.train(mode=False)
            y_pred_aug = []
            for aug_i in range(len(X_sup)):
                X_var = torch.autograd.Variable(
                    torch.from_numpy(X_sup[aug_i, ...]).cuda())
                y_pred = F.softmax(teacher_net(X_var)).data.cpu().numpy()
                y_pred_aug.append(y_pred[None, ...])
            y_pred_aug = np.concatenate(y_pred_aug, axis=0)
            return (y_pred_aug.mean(axis=0), )

        print('Compiled evaluation function')

        # Setup output
        cmdline_helpers.ensure_containing_dir_exists(log_file)

        def log(text):
            print(text)
            if log_file is not None:
                with open(log_file, 'a') as f:
                    f.write(text + '\n')
                    f.flush()
                    f.close()

        # Report setttings
        log('Program = {}'.format(sys.argv[0]))
        log('Settings: {}'.format(', '.join([
            '{}={}'.format(key, settings[key])
            for key in sorted(list(settings.keys()))
        ])))

        # Report dataset size
        log('Dataset:')
        log('SOURCE len(X)={}, y.shape={}'.format(len(d_source.images),
                                                  d_source.y.shape))
        log('TARGET len(X)={}'.format(len(d_target.images)))

        if epoch_size == 'source':
            n_samples = n_src
        elif epoch_size == 'target':
            n_samples = n_tgt
        else:
            n_samples = epoch_size
        n_train_batches = n_samples // batch_size
        n_test_batches = n_tgt // (batch_size * 2) + 1

        print('Training...')
        sup_ds = data_source.ArrayDataSource([d_source.images, d_source.y],
                                             repeats=-1,
                                             indices=source_indices)
        tgt_train_ds = data_source.ArrayDataSource([d_target.images],
                                                   repeats=-1,
                                                   indices=target_indices)
        train_ds = data_source.CompositeDataSource([sup_ds,
                                                    tgt_train_ds]).map(augment)
        train_ds = pool.parallel_data_source(train_ds,
                                             batch_buffer_size=min(
                                                 20, n_train_batches))

        target_ds_for_test = data_source.ArrayDataSource(
            [d_target.images], indices=target_indices)
        target_test_ds = target_ds_for_test.map(test_xf)
        target_test_ds = pool.parallel_data_source(target_test_ds,
                                                   batch_buffer_size=min(
                                                       20, n_test_batches))
        target_mult_test_ds = target_ds_for_test.map(test_xf_aug_mult)
        target_mult_test_ds = pool.parallel_data_source(target_mult_test_ds,
                                                        batch_buffer_size=min(
                                                            20,
                                                            n_test_batches))

        if seed != 0:
            shuffle_rng = np.random.RandomState(seed)
        else:
            shuffle_rng = np.random

        if d_target.has_ground_truth:
            evaluator = d_target.prediction_evaluator(target_indices)
        else:
            evaluator = None

        best_mask_rate = 0.0
        best_teacher_model_state = {
            k: v.cpu().numpy()
            for k, v in teacher_net.state_dict().items()
        }

        train_batch_iter = train_ds.batch_iterator(batch_size=batch_size,
                                                   shuffle=shuffle_rng)

        for epoch in range(num_epochs):
            t1 = time.time()

            if not skip_epoch_eval:
                test_batch_iter = target_test_ds.batch_iterator(
                    batch_size=batch_size * 2)
            else:
                test_batch_iter = None

            train_clf_loss, train_unsup_loss, mask_rate = data_source.batch_map_mean(
                f_train,
                train_batch_iter,
                progress_iter_func=progress_bar,
                n_batches=n_train_batches)

            # train_clf_loss, train_unsup_loss, mask_rate = train_ds.batch_map_mean(
            #     f_train, batch_size=batch_size, shuffle=shuffle_rng, n_batches=n_train_batches,
            #     progress_iter_func=progress_bar)

            if mask_rate > best_mask_rate:
                best_mask_rate = mask_rate
                improve = True
                improve_str = '*** '
                best_teacher_model_state = {
                    k: v.cpu().numpy()
                    for k, v in teacher_net.state_dict().items()
                }
            else:
                improve = False
                improve_str = ''

            if not skip_epoch_eval:
                tgt_pred_prob_y, = data_source.batch_map_concat(
                    f_pred_tgt,
                    test_batch_iter,
                    progress_iter_func=progress_bar)
                mean_class_acc, cls_acc_str = evaluator.evaluate(
                    tgt_pred_prob_y)
                t2 = time.time()

                log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, unsup loss={:.6f}, mask={:.3%}; '
                    'TGT mean class acc={:.3%}'.format(improve_str, epoch,
                                                       t2 - t1, train_clf_loss,
                                                       train_unsup_loss,
                                                       mask_rate,
                                                       mean_class_acc))
                log('  per class:  {}'.format(cls_acc_str))

                # Save results
                if arr_tgt_pred_history is not None:
                    arr_tgt_pred_history.append(
                        tgt_pred_prob_y[None, ...].astype(np.float32))
            else:
                t2 = time.time()
                log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, unsup loss={:.6f}, mask={:.3%}'
                    .format(improve_str, epoch, t2 - t1, train_clf_loss,
                            train_unsup_loss, mask_rate))

        # Save network
        if model_file != '':
            cmdline_helpers.ensure_containing_dir_exists(model_file)
            with open(model_file, 'wb') as f:
                pickle.dump(best_teacher_model_state, f)

        # Restore network to best state
        teacher_net.load_state_dict({
            k: torch.from_numpy(v)
            for k, v in best_teacher_model_state.items()
        })

        # Predict on test set, without augmentation
        tgt_pred_prob_y, = target_test_ds.batch_map_concat(
            f_pred_tgt, batch_size=batch_size, progress_iter_func=progress_bar)

        if d_target.has_ground_truth:
            mean_class_acc, cls_acc_str = evaluator.evaluate(tgt_pred_prob_y)

            log('FINAL: TGT mean class acc={:.3%}'.format(mean_class_acc))
            log('  per class:  {}'.format(cls_acc_str))

        # Predict on test set, using augmentation
        tgt_aug_pred_prob_y, = target_mult_test_ds.batch_map_concat(
            f_pred_tgt_mult,
            batch_size=batch_size,
            progress_iter_func=progress_bar)
        if d_target.has_ground_truth:
            aug_mean_class_acc, aug_cls_acc_str = evaluator.evaluate(
                tgt_aug_pred_prob_y)

            log('FINAL: TGT AUG mean class acc={:.3%}'.format(
                aug_mean_class_acc))
            log('  per class:  {}'.format(aug_cls_acc_str))

        if f_target_pred is not None:
            f_target_pred.create_array(g_tgt_pred, 'y_prob', tgt_pred_prob_y)
            f_target_pred.create_array(g_tgt_pred, 'y_prob_aug',
                                       tgt_aug_pred_prob_y)
            f_target_pred.close()
def experiment(exp, arch, rnd_init, img_size, standardise_samples,
               learning_rate, pretrained_lr_factor, fix_layers, double_softmax,
               use_dropout, scale_u_range, scale_x_range, scale_y_range,
               affine_std, xlat_range, rot_std, hflip, intens_scale_range,
               colour_rot_std, colour_off_std, greyscale, img_pad_width,
               num_epochs, batch_size, seed, log_file, result_file,
               hide_progress_bar, subsetsize, subsetseed, device):
    settings = locals().copy()

    if rnd_init:
        if fix_layers != '':
            print('`rnd_init` and `fix_layers` are mutually exclusive')
            return

    import os
    import sys
    import cmdline_helpers

    fix_layers = [lyr.strip() for lyr in fix_layers.split(',')]

    if log_file == '':
        log_file = 'output_aug_log_{}.txt'.format(exp)
    elif log_file == 'none':
        log_file = None

    if log_file is not None:
        if os.path.exists(log_file):
            print('Output log file {} already exists'.format(log_file))
            return

    intens_scale_range_lower, intens_scale_range_upper = cmdline_helpers.colon_separated_range(
        intens_scale_range)
    scale_u_range = cmdline_helpers.colon_separated_range(scale_u_range)
    scale_x_range = cmdline_helpers.colon_separated_range(scale_x_range)
    scale_y_range = cmdline_helpers.colon_separated_range(scale_y_range)

    import time
    import tqdm
    import math
    import tables
    import numpy as np
    from batchup import data_source, work_pool
    import image_dataset, visda17_dataset, office_dataset
    import network_architectures
    import augmentation
    import image_transforms
    from sklearn.model_selection import StratifiedShuffleSplit
    import torch, torch.cuda
    from torch import nn
    from torch.nn import functional as F

    if hide_progress_bar:
        progress_bar = None
    else:
        progress_bar = tqdm.tqdm

    with torch.cuda.device(device):
        pool = work_pool.WorkerThreadPool(4)

        n_chn = 0
        half_batch_size = batch_size // 2

        RESNET_ARCHS = {'resnet50', 'resnet101', 'resnet152'}
        RNDINIT_ARCHS = {'vgg13_48_gp'}

        if arch == '':
            if exp in {'train_val', 'train_test'}:
                arch = 'resnet50'

        if arch in RESNET_ARCHS and not rnd_init:
            mean_value = np.array([0.485, 0.456, 0.406])
            std_value = np.array([0.229, 0.224, 0.225])
        elif arch in RNDINIT_ARCHS:
            mean_value = np.array([0.5, 0.5, 0.5])
            std_value = np.array([0.5, 0.5, 0.5])
            rnd_init = True
        else:
            mean_value = std_value = None

        img_shape = (img_size, img_size)
        img_padding = (img_pad_width, img_pad_width)

        if exp == 'visda_train_val':
            d_source = visda17_dataset.TrainDataset(img_size=img_shape,
                                                    range01=True,
                                                    rgb_order=True)
            d_target = visda17_dataset.ValidationDataset(img_size=img_shape,
                                                         range01=True,
                                                         rgb_order=True)
        elif exp == 'visda_train_test':
            d_source = visda17_dataset.TrainDataset(img_size=img_shape,
                                                    range01=True,
                                                    rgb_order=True)
            d_target = visda17_dataset.TestDataset(img_size=img_shape,
                                                   range01=True,
                                                   rgb_order=True)
        elif exp == 'office_amazon_dslr':
            d_source = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
        elif exp == 'office_amazon_webcam':
            d_source = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_dslr_amazon':
            d_source = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
            d_target = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_dslr_webcam':
            d_source = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
            d_target = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_webcam_amazon':
            d_source = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeAmazonDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
        elif exp == 'office_webcam_dslr':
            d_source = office_dataset.OfficeWebcamDataset(img_size=img_shape,
                                                          range01=True,
                                                          rgb_order=True)
            d_target = office_dataset.OfficeDSLRDataset(img_size=img_shape,
                                                        range01=True,
                                                        rgb_order=True)
        else:
            print('Unknown experiment type \'{}\''.format(exp))
            return

        #
        # Result file
        #

        if result_file != '':
            cmdline_helpers.ensure_containing_dir_exists(result_file)
            h5_filters = tables.Filters(complevel=9, complib='blosc')
            f_target_pred = tables.open_file(result_file, mode='w')
            g_tgt_pred = f_target_pred.create_group(f_target_pred.root,
                                                    'target_pred_y',
                                                    'Target prediction')
            arr_tgt_pred = f_target_pred.create_earray(
                g_tgt_pred,
                'y',
                tables.Float32Atom(),
                (0, len(d_target.images), d_target.n_classes),
                filters=h5_filters)
        else:
            f_target_pred = None
            g_tgt_pred = None
            arr_tgt_pred = None

        # Delete the training ground truths as we should not be using them
        # del d_target.y

        n_classes = d_source.n_classes

        print('Loaded data')

        net_class = network_architectures.get_build_fn_for_architecture(arch)

        net = net_class(n_classes, img_size, use_dropout, not rnd_init).cuda()

        if arch in RESNET_ARCHS and not rnd_init:
            named_params = list(net.named_parameters())
            new_params = []
            pretrained_params = []
            for name, param in named_params:
                if name.startswith('new_'):
                    new_params.append(param)
                else:
                    fix = False
                    for lyr in fix_layers:
                        if name.startswith(lyr + '.'):
                            fix = True
                            break
                    if not fix:
                        pretrained_params.append(param)
                    else:
                        print('Fixing param {}'.format(name))
                        param.requires_grad = False

            new_optimizer = torch.optim.Adam(new_params, lr=learning_rate)
            if len(pretrained_params) > 0:
                pretrained_optimizer = torch.optim.Adam(pretrained_params,
                                                        lr=learning_rate *
                                                        pretrained_lr_factor)
            else:
                pretrained_optimizer = None
        else:
            new_optimizer = torch.optim.Adam(net.parameters(),
                                             lr=learning_rate)
            pretrained_optimizer = None
        classification_criterion = nn.CrossEntropyLoss()

        print('Built network')

        # Image augmentation

        aug = augmentation.ImageAugmentation(
            hflip,
            xlat_range,
            affine_std,
            rot_std=rot_std,
            intens_scale_range_lower=intens_scale_range_lower,
            intens_scale_range_upper=intens_scale_range_upper,
            colour_rot_std=colour_rot_std,
            colour_off_std=colour_off_std,
            greyscale=greyscale,
            scale_u_range=scale_u_range,
            scale_x_range=scale_x_range,
            scale_y_range=scale_y_range)

        test_aug = augmentation.ImageAugmentation(hflip,
                                                  xlat_range,
                                                  0.0,
                                                  rot_std=0.0,
                                                  scale_u_range=scale_u_range,
                                                  scale_x_range=scale_x_range,
                                                  scale_y_range=scale_y_range)

        border_value = int(np.mean(mean_value) * 255 + 0.5)

        sup_xf = image_transforms.Compose(
            image_transforms.ScaleCropAndAugmentAffine(img_shape, img_padding,
                                                       True, aug, border_value,
                                                       mean_value, std_value),
            image_transforms.ToTensor(),
        )

        test_xf = image_transforms.Compose(
            image_transforms.ScaleAndCrop(img_shape, img_padding, False),
            image_transforms.ToTensor(),
            image_transforms.Standardise(mean_value, std_value),
        )

        test_xf_aug_mult = image_transforms.Compose(
            image_transforms.ScaleCropAndAugmentAffineMultiple(
                16, img_shape, img_padding, True, test_aug, border_value,
                mean_value, std_value),
            image_transforms.ToTensorMultiple(),
        )

        def augment(X_sup, y_sup):
            X_sup = sup_xf(X_sup)[0]
            return X_sup, y_sup

        _one = torch.autograd.Variable(
            torch.from_numpy(np.array([1.0]).astype(np.float32)).cuda())

        def f_train(X_sup, y_sup):
            X_sup = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            y_sup = torch.autograd.Variable(
                torch.from_numpy(y_sup).long().cuda())

            if pretrained_optimizer is not None:
                pretrained_optimizer.zero_grad()
            new_optimizer.zero_grad()
            net.train(mode=True)

            sup_logits_out = net(X_sup)

            # Supervised classification loss
            if double_softmax:
                clf_loss = classification_criterion(F.softmax(sup_logits_out),
                                                    y_sup)
            else:
                clf_loss = classification_criterion(sup_logits_out, y_sup)

            loss_expr = clf_loss

            loss_expr.backward()
            if pretrained_optimizer is not None:
                pretrained_optimizer.step()
            new_optimizer.step()

            n_samples = X_sup.size()[0]

            return (float(clf_loss.data.cpu()[0]) * n_samples, )

        print('Compiled training function')

        def f_pred(X_sup):
            X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            net.train(mode=False)
            return F.softmax(net(X_var)).data.cpu().numpy()

        def f_pred_tgt_mult(X_sup):
            net.train(mode=False)
            y_pred_aug = []
            for aug_i in range(len(X_sup)):
                X_var = torch.autograd.Variable(
                    torch.from_numpy(X_sup[aug_i, ...]).cuda())
                y_pred = F.softmax(net(X_var)).data.cpu().numpy()
                y_pred_aug.append(y_pred[None, ...])
            y_pred_aug = np.concatenate(y_pred_aug, axis=0)
            return (y_pred_aug.mean(axis=0), )

        print('Compiled evaluation function')

        # Setup output
        def log(text):
            print(text)
            if log_file is not None:
                with open(log_file, 'a') as f:
                    f.write(text + '\n')
                    f.flush()
                    f.close()

        cmdline_helpers.ensure_containing_dir_exists(log_file)

        # Report setttings
        log('Program = {}'.format(sys.argv[0]))
        log('Settings: {}'.format(', '.join([
            '{}={}'.format(key, settings[key])
            for key in sorted(list(settings.keys()))
        ])))

        # Report dataset size
        log('Dataset:')
        print('SOURCE len(X)={}, y.shape={}'.format(len(d_source.images),
                                                    d_source.y.shape))
        print('TARGET len(X)={}'.format(len(d_target.images)))

        # Subset
        source_indices, target_indices, n_src, n_tgt = image_dataset.subset_indices(
            d_source, d_target, subsetsize, subsetseed)

        n_train_batches = n_src // batch_size + 1
        n_test_batches = n_tgt // (batch_size * 2) + 1

        print('Training...')
        train_ds = data_source.ArrayDataSource([d_source.images, d_source.y],
                                               indices=source_indices)
        train_ds = train_ds.map(augment)
        train_ds = pool.parallel_data_source(train_ds,
                                             batch_buffer_size=min(
                                                 20, n_train_batches))

        # source_test_ds = data_source.ArrayDataSource([d_source.images])
        # source_test_ds = pool.parallel_data_source(source_test_ds)
        target_ds_for_test = data_source.ArrayDataSource(
            [d_target.images], indices=target_indices)
        target_test_ds = target_ds_for_test.map(test_xf)
        target_test_ds = pool.parallel_data_source(target_test_ds,
                                                   batch_buffer_size=min(
                                                       20, n_test_batches))
        target_mult_test_ds = target_ds_for_test.map(test_xf_aug_mult)
        target_mult_test_ds = pool.parallel_data_source(target_mult_test_ds,
                                                        batch_buffer_size=min(
                                                            20,
                                                            n_test_batches))

        if seed != 0:
            shuffle_rng = np.random.RandomState(seed)
        else:
            shuffle_rng = np.random

        if d_target.has_ground_truth:
            evaluator = d_target.prediction_evaluator(target_indices)
        else:
            evaluator = None

        train_batch_iter = train_ds.batch_iterator(batch_size=batch_size,
                                                   shuffle=shuffle_rng)

        for epoch in range(num_epochs):
            t1 = time.time()

            test_batch_iter = target_test_ds.batch_iterator(
                batch_size=batch_size)

            train_clf_loss, = data_source.batch_map_mean(
                f_train,
                train_batch_iter,
                n_batches=n_train_batches,
                progress_iter_func=progress_bar)
            # train_clf_loss, train_unsup_loss, mask_rate, train_align_loss = train_ds.batch_map_mean(
            #     lambda *x: 1.0, batch_size=batch_size, shuffle=shuffle_rng, n_batches=n_train_batches,
            #     progress_iter_func=progress_bar)

            if d_target.has_ground_truth or arr_tgt_pred is not None:
                tgt_pred_prob_y, = data_source.batch_map_concat(
                    f_pred, test_batch_iter, progress_iter_func=progress_bar)
            else:
                tgt_pred_prob_y = None

            train_batch_iter = train_ds.batch_iterator(batch_size=batch_size,
                                                       shuffle=shuffle_rng)

            if d_target.has_ground_truth:
                mean_class_acc, cls_acc_str = evaluator.evaluate(
                    tgt_pred_prob_y)

                t2 = time.time()

                log('Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}; '
                    'TGT mean class acc={:.3%}'.format(epoch, t2 - t1,
                                                       train_clf_loss,
                                                       mean_class_acc))
                log('  per class:  {}'.format(cls_acc_str))
            else:
                t2 = time.time()

                log('Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}'.format(
                    epoch, t2 - t1, train_clf_loss))

            # Save results
            if arr_tgt_pred is not None:
                arr_tgt_pred.append(tgt_pred_prob_y[None,
                                                    ...].astype(np.float32))

        # Predict on test set, using augmentation
        tgt_aug_pred_prob_y, = target_mult_test_ds.batch_map_concat(
            f_pred_tgt_mult,
            batch_size=batch_size,
            progress_iter_func=progress_bar)
        if d_target.has_ground_truth:
            aug_mean_class_acc, aug_cls_acc_str = evaluator.evaluate(
                tgt_aug_pred_prob_y)

            log('FINAL: TGT AUG mean class acc={:.3%}'.format(
                aug_mean_class_acc))
            log('  per class:  {}'.format(aug_cls_acc_str))

        if f_target_pred is not None:
            f_target_pred.create_array(g_tgt_pred, 'y_prob', tgt_pred_prob_y)
            f_target_pred.create_array(g_tgt_pred, 'y_prob_aug',
                                       tgt_aug_pred_prob_y)
            f_target_pred.close()
Пример #3
0
def main():
    #os.environ["CUDA_VISIBLE_DEVICES"] = "1"

    global args, best_EPE, save_path
    args=parser.parse_args()
    save_path='{},{},{}epochs{},b{},lr{}'.format(
        args.arch,
        args.solver,
        args.epochs,
        ',epochSize'+str(args.epoch_size) if args.epoch_size >0 else '',
        args.batch_size,
        args.lr
    )

    #args.pretrained='./Lambertian_direction/09_04_19_40/upsnets_bn,adam,300epochs,epochSize1000,b16,lr0.0002/checkpoint.pth.tar'

    if not args.no_date:
        timestamp=datetime.datetime.now().strftime("%m_%d_%H_%M")
        save_path=os.path.join(timestamp,save_path)
    save_path=os.path.join(args.dataname,save_path)
    print('=> will save everything to {}'.format(save_path))
    if not os.path.exists(save_path):
        os.makedirs(save_path)

    train_writer=SummaryWriter(os.path.join(save_path,'train'))
    test_writer = SummaryWriter(os.path.join(save_path, 'test'))

    output_writers = []
    for i in range(3):
        output_writers.append(SummaryWriter(os.path.join(save_path, 'test', str(i))))

    input_transform = image_transforms.Compose([
        image_transforms.ArrayToTensor(),
        image_transforms.CenterCrop(128)

    ])

    print("=> fetching img pairs in '{}'".format(args.datadir))

    train_set, test_set = dataset.__dict__[args.dataname](
        args.datadir,
        transform=input_transform,
        split=args.split_file if args.split_file else args.split_value,
        light_num=Light_num,
        ChoiseTime=ChoiseTime
    )
    print('{} samples found, {} train samples and {} test samples '.format(len(test_set) + len(train_set),
                                                                           len(train_set),
                                                                           len(test_set)))
    train_loader = torch.utils.data.DataLoader(
        train_set, batch_size=args.batch_size,
        num_workers=args.workers, pin_memory=True, shuffle=True)
    val_loader = torch.utils.data.DataLoader(
        test_set, batch_size=args.batch_size,
        num_workers=args.workers, pin_memory=True, shuffle=False)

    if args.pretrained:
        network_data = torch.load(args.pretrained)
        args.arch = network_data['arch']
        print("=> using pre-trained model '{}'".format(args.arch))
    else:
        network_data = None
        print("=> creating model '{}'".format(args.arch))

    mymodel=models.__dict__[args.arch](network_data,input_N=Light_num).cuda()
    mymodel=torch.nn.DataParallel(mymodel).cuda()
    cudnn.benchmark=True

    assert(args.solver in ['adam','sgd'])
    print('=> setting {} solver '.format(args.solver))
    param_groups =[{'params': mymodel.module.bias_parameters(), 'weight_decay': args.bias_decay},
                   {'params': mymodel.module.weight_parameters(),'weight_decay':args.weight_decay}]

    if args.solver == 'adam':
        optimizer=torch.optim.Adam(param_groups,args.lr,betas=(args.momentum,args.beta))
    elif args.solver=='sgd':
        optimizer=torch.optim.SGD(param_groups,args.lr,args.momentum)

    scheduler= torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones,gamma=0.5)

    for epoch in range(args.start_epoch, args.epochs):
        scheduler.step()


        train_loss = train(train_loader, mymodel, optimizer, epoch, train_writer)
        train_writer.add_scalar('mean loss in train epoch', train_loss, epoch)
Пример #4
0
def experiment(exp, scale_u_range, scale_x_range, scale_y_range, affine_std,
               xlat_range, rot_std, hflip, intens_scale_range, colour_rot_std,
               colour_off_std, greyscale, cutout_prob, cutout_size, batch_size,
               n_batches, seed):
    import os
    import sys
    import cmdline_helpers
    intens_scale_range_lower, intens_scale_range_upper = cmdline_helpers.colon_separated_range(
        intens_scale_range)
    scale_u_range = cmdline_helpers.colon_separated_range(scale_u_range)
    scale_x_range = cmdline_helpers.colon_separated_range(scale_x_range)
    scale_y_range = cmdline_helpers.colon_separated_range(scale_y_range)

    import time
    import tqdm
    import math
    import numpy as np
    from matplotlib import pyplot as plt
    from batchup import data_source, work_pool
    import visda17_dataset
    import augmentation, image_transforms
    import itertools

    n_chn = 0

    mean_value = np.array([0.485, 0.456, 0.406])
    std_value = np.array([0.229, 0.224, 0.225])

    if exp == 'train_val':
        d_source = visda17_dataset.TrainDataset(img_size=(96, 96),
                                                mean_value=mean_value,
                                                std_value=std_value,
                                                range01=True,
                                                rgb_order=True,
                                                random_crop=False)
        d_target = visda17_dataset.ValidationDataset(img_size=(96, 96),
                                                     mean_value=mean_value,
                                                     std_value=std_value,
                                                     range01=True,
                                                     rgb_order=True,
                                                     random_crop=False)
        d_target_test = visda17_dataset.ValidationDataset(
            img_size=(96, 96),
            mean_value=mean_value,
            std_value=std_value,
            range01=True,
            rgb_order=True,
            random_crop=False)
    elif exp == 'train_test':
        print('train_test experiment not supported yet')
        return
    else:
        print('Unknown experiment type \'{}\''.format(exp))
        return

    n_classes = d_source.n_classes
    n_domains = 2

    print('Loaded data')

    arch = 'show-images'

    # Image augmentation

    aug = augmentation.ImageAugmentation(
        hflip,
        xlat_range,
        affine_std,
        rot_std=rot_std,
        intens_scale_range_lower=intens_scale_range_lower,
        intens_scale_range_upper=intens_scale_range_upper,
        colour_rot_std=colour_rot_std,
        colour_off_std=colour_off_std,
        greyscale=greyscale,
        scale_u_range=scale_u_range,
        scale_x_range=scale_x_range,
        scale_y_range=scale_y_range,
        cutout_size=cutout_size,
        cutout_probability=cutout_prob)

    # Report setttings
    print('sys.argv={}'.format(sys.argv))

    # Report dataset size
    print('Dataset:')
    print('SOURCE len(X)={}, y.shape={}'.format(len(d_source.images),
                                                d_source.y.shape))
    print('TARGET len(X)={}'.format(len(d_target.images)))

    print('Building data sources...')
    source_train_ds = data_source.ArrayDataSource(
        [d_source.images, d_source.y], repeats=-1)
    target_train_ds = data_source.ArrayDataSource([d_target.images],
                                                  repeats=-1)
    train_ds = data_source.CompositeDataSource(
        [source_train_ds, target_train_ds])

    border_value = int(np.mean(mean_value) * 255 + 0.5)

    train_xf = image_transforms.Compose(
        image_transforms.ScaleCropAndAugmentAffine(
            (96, 96), (16, 16), True, aug, border_value, mean_value,
            std_value),
        image_transforms.ToTensor(),
    )

    test_xf = image_transforms.Compose(
        image_transforms.ScaleAndCrop((96, 96), (16, 16), False),
        image_transforms.ToTensor(),
        image_transforms.Standardise(mean_value, std_value),
    )

    def augment(X_sup, y_sup, X_tgt):
        X_sup = train_xf(X_sup)[0]
        X_tgt_0 = train_xf(X_tgt)[0]
        X_tgt_1 = train_xf(X_tgt)[0]
        return [X_sup, y_sup, X_tgt_0, X_tgt_1]

    train_ds = train_ds.map(augment)

    test_ds = data_source.ArrayDataSource([d_target_test.images]).map(test_xf)

    if seed != 0:
        shuffle_rng = np.random.RandomState(seed)
    else:
        shuffle_rng = np.random

    print('Showing...')

    n_shown = 0
    for (src_X, src_y, tgt_X0, tgt_X1), (te_X, ) in zip(
            train_ds.batch_iterator(batch_size=batch_size,
                                    shuffle=shuffle_rng),
            test_ds.batch_iterator(batch_size=batch_size)):
        print('Batch')
        tgt_X = np.zeros(
            (tgt_X0.shape[0] + tgt_X1.shape[0], ) + tgt_X0.shape[1:],
            dtype=np.float32)
        tgt_X[0::2] = tgt_X0
        tgt_X[1::2] = tgt_X1
        x = np.concatenate([src_X, tgt_X, te_X], axis=0)
        n = x.shape[0]
        n_sup = src_X.shape[0] + tgt_X.shape[0]
        across = int(math.ceil(math.sqrt(float(n))))
        plt.figure(figsize=(16, 16))

        for i in tqdm.tqdm(range(n)):
            plt.subplot(across, across, i + 1)
            im_x = x[i] * std_value[:, None, None] + mean_value[:, None, None]
            im_x = np.clip(im_x, 0.0, 1.0)
            plt.imshow(im_x.transpose(1, 2, 0))
            if i < src_y.shape[0]:
                plt.title(str(src_y[i]))
            elif i < n_sup:
                plt.title('target')
            else:
                plt.title('test')
        plt.show()
        n_shown += 1
        if n_shown >= n_batches:
            break