def network_test(args):
    device = torch.device("cuda" if args.cuda_device_no >= 0 else 'cpu')

    transform_network = load_transform_network(args)
    transform_network = transform_network.to(device)

    input_image = imload(args.test_content, args.imsize).to(device)

    with torch.no_grad():
        output_image = transform_network(input_image)

    imsave(output_image, args.output)

    return None
Пример #2
0
    device = torch.device('cuda' if args.cuda_device_no >= 0 else 'cpu')

    # load target images
    content_image = imload(args.target_content_filename, args.imsize,
                           args.cropsize)
    content_image = content_image.to(device)

    style_image = imload(args.target_style_filename, args.imsize,
                         args.cropsize)
    style_image = style_image.to(device)

    # load pre-trianed vgg
    vgg = get_vgg_feature_network(args.vgg_flag)
    vgg = vgg.to(device)

    # stylize image
    output_image = stylize_image(vgg=vgg,
                                 device=device,
                                 content_image=content_image,
                                 style_image=style_image,
                                 content_weight=args.content_weight,
                                 style_weight=args.style_weight,
                                 tv_weight=args.tv_weight,
                                 content_layers=args.content_layers,
                                 style_layers=args.style_layers,
                                 learning_rate=args.lr,
                                 iterations=args.iterations,
                                 noise_content_ratio=args.noise_content_ratio)

    imsave(output_image.cpu(), args.save_filename)
Пример #3
0
def network_train(args):
    device = torch.device("cuda" if args.cuda_device_no >= 0 else 'cpu')

    # Transform Network
    transform_network = TransformNetwork()
    transform_network = transform_network.to(device)
    
    # Content Data set
    train_dataset = ImageFolder(args.train_content, get_transformer(args.imsize, args.cropsize))

    # Loss network
    loss_network = torchvision.models.__dict__[args.vgg_flag](pretrained=True).features.to(device)

    # Optimizer
    optimizer = torch.optim.Adam(params=transform_network.parameters(), lr=args.lr)

    # Target style image
    single_style_img=False
    if args.train_style!=None:
        print("args.train_style=",args.train_style)
        single_style_img=True
    if single_style_img:
        target_style_image = imload(args.train_style, imsize=args.imsize).to(device)
        b, c, h, w = target_style_image.size()
        target_style_image = target_style_image.expand(args.batchs, c, h, w)
    else:
        img_names=os.listdir(args.train_style_folder)

    # Train
    loss_logs = {'content_loss':[], 'style_loss':[], 'tv_loss':[], 'total_loss':[]}
    for iteration in range(args.max_iter):
        if not single_style_img:
            target_img_name=random.choice(img_names)
            target_img_path=os.path.join(args.train_style_folder,target_img_name)
            target_style_image = imload(target_img_path, imsize=args.imsize).to(device)
            b, c, h, w = target_style_image.size()
            target_style_image = target_style_image.expand(args.batchs, c, h, w)

        train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batchs, shuffle=True)
        image = next(iter(train_dataloader))
        image = image.to(device)

        output_image = transform_network(image)

        target_content_features = extract_features(loss_network, image, args.content_layers)
        target_style_features = extract_features(loss_network, target_style_image, args.style_layers) 

        output_content_features = extract_features(loss_network, output_image, args.content_layers)
        output_style_features = extract_features(loss_network, output_image, args.style_layers)

        content_loss = calc_Content_Loss(output_content_features, target_content_features)
        style_loss = calc_Gram_Loss(output_style_features, target_style_features)
        tv_loss = calc_TV_Loss(output_image)
        
        total_loss = content_loss * args.content_weight + style_loss * args.style_weight + tv_loss * args.tv_weight

        loss_logs['content_loss'].append(content_loss.item())
        loss_logs['style_loss'].append(style_loss.item())
        loss_logs['tv_loss'].append(tv_loss.item())
        loss_logs['total_loss'].append(total_loss.item())

        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()

        # print loss logs
        if iteration % args.check_iter == 0:
            str_ = '%s: iteration: [%d/%d/],\t'%(time.ctime(), iteration, args.max_iter)
            for key, value in loss_logs.items():
                # check most recent 100 loss values
                str_ += '%s: %2.2f,\t'%(key, sum(value[-100:])/100)
            print(str_)
            
            imsave(output_image.cpu(), args.save_path+"training_images.png")

            torch.save(transform_network.state_dict(), args.save_path+"transform_network.pth")

    # save train results
    torch.save(loss_logs, args.save_path+"loss_logs.pth")
    torch.save(transform_network.state_dict(), args.save_path+"transform_network.pth")

    return transform_network